期刊文献+

Improved Blind Multiuser Detection Algorithm Based on Minimum Output Energy

Improved Blind Multiuser Detection Algorithm Based on Minimum Output Energy
下载PDF
导出
摘要 Based on minimum output energy,an improved blind multiuser detection algorithm is proposed by the use of Hopfield neural network.Compared with traditional algorithms,the proposed algorithm does not need the circuit for constraints.The resources are greatly saved and the complexity is reduced as well.The simulation results show that the performance of the improved algorithm is similar to that of the optimal multiuser detection algorithm which is not suitable for the mobile station.Compared with the traditional gradient blind multiuser detection algorithm,the convergence speed of the improved algorithm is quickened. Based on minimum output energy, an improved blind multiuser detection algorithm is proposed by the use of Hopfield neural network. Compared with traditional algorithms, the proposed algorithm does not need the circuit for constraints. The resources are greatly saved and the complexity is reduced as well. The simulation results show that the performance of the improved algorithm is similar to that of the optimal multiuser detection algorithm which is not suitable for the mobile station. Compared with the traditional gradient blind multiuser detection algorithm, the convergence speed of the improved algorithm is quickened.
出处 《Transactions of Tianjin University》 EI CAS 2012年第6期450-455,共6页 天津大学学报(英文版)
基金 Supported by China Postdoctoral Science Foundation(No.20060390170) Science and Technology Development Foundation of Tianjin University(No.20060610)
关键词 multiuser detection minimum output energy (MOE) Hopfield neural network energy function constrained optimization 自适应多用户检测算法 最小输出能量 Hopfield神经网络 盲多用户检测算法 节省资源 仿真结果 收敛速度 复杂性
  • 相关文献

参考文献9

二级参考文献67

  • 1李艳萍,王华奎.一种适合多径信道的盲多用户检测方法[J].计算机工程与应用,2006,42(16):156-157. 被引量:3
  • 2Fantacci R,Mancini L,Tarchi D.Multiuser interference mitigation in multipath fading channels using a neural network based blind receiver[J].IEEE Trans Circ Syst, 2003,50(8) :488-492.
  • 3Jeney G,Levendovszky 3,Kovacs L.Blind adaptive stochastic neural network for multiuser detection[J].IEEE Trans Commun,2001,6(1): 1868-1872.
  • 4Liu Shu-bao,Wang Jun.Blind adaptive multiuser detection using a recurrent neural network[J].IEEE Trans Commun, 2004,7 (4) : 1071- 1705.
  • 5Peng Pei-yuan.An efficient multi-user detection algorithm for direct sequence code division muliple access by using neural network[C]//IEEE International Conference on Communications,2001, 1 : 36-40.
  • 6Eldar Y C,Oppenheim A V.Orthogonal multiuser detection[J].Signal Processing, 2002,82 : 321-325.
  • 7Perreau S L,White L B.Nonlinear iterative multiuser detection and equalization for CDMA receivers in the presence of interchip interference[J].Digital Signal Processing, 2001( 11 ) : 94-109.
  • 8阎平凡,张长水.人工神经网络与模拟进化计算[M].2版.北京:清华大学出版社,2003.
  • 9Zhang S W,IEEE Trans CAS,1992年,39卷,7期,441页
  • 10Yao Y,IEEE Trans CAS,1989年,19卷,5期,1222页

共引文献29

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部