期刊文献+

云计算环境下的大规模图状数据处理任务调度算法 被引量:16

A Task Scheduling Algorithm for Large Graph Processing Cloud in Computing
下载PDF
导出
摘要 针对云计算环境下调度算法必须考虑资源租赁成本的问题,提出一种新的基于粒子群优化的大规模图状数据处理任务调度算法(LGPPSO).首先,该算法将图状数据处理任务调度方案编码为粒子群中粒子的位置,并利用任务的调度长度和资源租赁成本建立适应度函数来评价当前粒子的优劣程度,然后重新定义粒子群的参数和相关操作,最后在算法的每一次迭代过程中,粒子不断更新自身的速度和位置,以获得任务调度的近似最优解.模拟实验结果表明:在仅以调度长度为目标时,LGPPSO算法的调度长度比异构最早完成时间任务调度算法(HEFT)平均降低约12.3%;在以调度长度和资源租赁成本为目标时,与成本感知任务调度算法(CCSH)相比,在资源租赁成本基本一致的情况下,LGPPSO算法的调度长度平均降低约9.97%. A new task scheduling algorithm for large graph processing based on particle swarm optimization(short for LGPPSO) is proposed to take the monetary cost in cloud computing into account.The schedule plan for large graph processing task is expressed as position of particles,and both the monetary cost and the schedule length are used in the fitness function.The parameters and operations of the particles in LGPPSO are then redefined.The velocity and position of particles are updated at each iteration to get a near-optimal solution.Simulation results show that the average schedule length of LGPPSO algorithm is reduced by about 12.3% compared to the heterogeneous earliest finish time algorithm,and is reduced by about 9.97% compared to the cost conscious scheduling heuristic algorithm with similar resource rental cost.
出处 《西安交通大学学报》 EI CAS CSCD 北大核心 2012年第12期116-122,共7页 Journal of Xi'an Jiaotong University
基金 国家自然科学基金资助项目(61170274)
关键词 大规模图状数据处理 调度算法 粒子群优化 云计算 large graph processing scheduling algorithm particle swarm optimization cloud computing
  • 相关文献

参考文献21

  • 1MALEWICZ G,AUSTERN M H,BIK A J,et al.Pregel:a system for large-scale graph processing[C]∥Proceedings of the2010ACM SIGMOD Interna-tional Conference on Management of Data.New York,USA:ACM,2010:135-146.
  • 2于戈,谷峪,鲍玉斌,王志刚.云计算环境下的大规模图数据处理技术[J].计算机学报,2011,34(10):1753-1767. 被引量:98
  • 3ARMBRUST M,FOX A,GIFFITH R,et al.Above the clouds:a Berkeley view of cloud computing[EB/OL].(2009-10-08)[2012-04-03].http:∥www.ee-cs.berkeley.edu/Pubs/TechRpts/2009/EECS-2009-28.html.
  • 4BUYYA R,YEO C S,VENUGOPAL S,et al.Cloud computing and emerging IT platforms:vision,hype,and reality for delivering computing as the5th utility[J].Future Generation Computer Systems,2009,25(6):599-616.
  • 5ULLMAN J K.NP-complete scheduling problems[J].Journal of Computer and Systems Sciences,1975,10(3):498-500.
  • 6TOPCUOGLU K,HARIRI S,WU M.Performance-effective and low-complexity task scheduling for heter-ogeneous computing[J].IEEE Transactions on Paral-lel and Distributed Systems,2002,13(3):260-274.
  • 7BOZDA D,ZGNER F,CATALYUREK R U.A task duplication based bottom-up scheduling algorithm for heterogeneous environments[C]∥Proceedings of the 20th International Parallel and Distributed Processing Symposium.Piscataway,NJ,USA:IEEE,2006:160-172.
  • 8YANG T,GERASOULI A.DSC:scheduling parallel tasks on an unbounded number of processors[J].IEEE Transactions on Parallel and Distributed Sys-tems,1994,5(9):951-967.
  • 9DEELMAN E,SINGH G,SU M H,et al.Pegasus:a framework for mapping complex scientific workflows onto distributed systems[J].Scientific Programming,2005,13(3):219-237.
  • 10ISARD M,BUDIU M,YU Yuan,et al.Dryad:dis-tributed data-parallel programs from sequential build-ing blocks[C]∥Proceedings of the2nd ACM SIGOPS/EuroSys European Conference on Computer Systems.New York,USA:ACM,2007:59-72.

二级参考文献71

  • 1魏薇,杨放春.基于遗传算法进化业务冲突检测规则的研究[J].电子学报,2007,35(4):634-639. 被引量:3
  • 2Amazon SimpleDB. http://aws, amazon, com/simpledb/, 2011-8-10.
  • 3Connor Alexander G, Chrysanthis Panos K, Labrinidis Alexandros. Key key-value stores for efficiently processing graph data in the cloud//Proceedings of the GDM. Hannover, Germany, 2011:88-93.
  • 4Lordanov Borislav. HyperGraphDB: A generalized graph database//Proceedings of the IWGD. JiuZhai Valley, China, 2010:25-36.
  • 5Eifrem Emil. NOSQL: Scaling to size and scaling to complexity, http://blogs, neotechnology, com/emil/2009/11/ nosql-scaling tosize-and-scaling-to-complexity, html, 2009- 1-15.
  • 6Wu Sai, Jiang Da-Wei, Ooi Beng Chin et al. Efficient B-tree based indexing for cloud data proeessing//Proeeedings of the VLDB. Singapore, 2010: 1207-1218.
  • 7Wang Jin-Bao, Wu Sai, Gao Hong et al. Indexing multi dimensional data in a cloud system//Proceedings of the SIGMOD. Indianapolis, Indiana, USA, 2010: 591-602.
  • 8Tsatsanifos George, Sacharidis Dimitris, Sellis Timos et al. MIDAS: Multi-attribute indexing for distributed architecture systems//Proceedings of the SSTD. Minneapolis, MN, USA, 2011:168-185.
  • 9Aguilera M K, Golab W, Shah M A. A practical scalable distributed B-tree//Proceedings of the VLDB. Auckland, New Zealand, 2008: 598-609.
  • 10Zhang Xiang-Yu, Ai Jing, Wang Zhong-Yuan, Lu Jia-Heng et al. An efficient multi-dimensional index for cloud data management//Proceedings of the CloudDB. Hong Kong, China, 2009:17-24.

共引文献129

同被引文献137

  • 1许力,曾智斌,姚川.云计算环境中虚拟资源分配优化策略研究[J].通信学报,2012,33(S1):9-16. 被引量:26
  • 2刘正伟,文中领,张海涛.云计算和云数据管理技术[J].计算机研究与发展,2012,49(S1):26-31. 被引量:170
  • 3孟凡超,张海洲,初佃辉.基于蚁群优化算法的云计算资源负载均衡研究[J].华中科技大学学报(自然科学版),2013,41(S2):57-62. 被引量:13
  • 4CHAKRABARTI A, DAMODARAN A, SENGUPTA S. Grid compu- ting security: a taxonomy[J]. IEEE Security & Privacy, 2008, 6 (1) :44-51.
  • 5KOЮDZIEJ J, XHAFA F. Integration of task abortion and security requirements in GA-based meta-heuristics for independent batch gridscheduling[J]. Computers and Mathematics with Applications, 2012, 63(2) : 350-364.
  • 6LIU Hong-bo, ABRANHAM A, SNASEL V, et al. Swarm scheduling approaches for work-flow applications with security constraints in dis- tributed data-intensive computing environments[J]. Information Sci- ences, 2012,192(6) : 228-243.
  • 7WU Zhang-jun, LIU Xiao, NI Zhi-wei, et al. A market-oriented hier- archical scheduling strategy in cloud workflow systems [ J ]. ,Journal of Supercomput, 2013, 63( 1 ): 256-293.
  • 8WANG Wei, ZENG Guo-sun, TANG Dai-zhong, et al. Cloud-DLS: dynamic trusted scheduling for cloud computing [ J ]. Expert Sys- tems with Applications, 2012, 39(3): 2321-2329.
  • 9LI De-yi, LIU Chang-yu, GAN Wen-yan. A new cognitive model: cloud model [ J]. International Journal of Inteligent Systems, 2009, 24(3) : 357-375.
  • 10SALMAN A, AHMAD I, AL-MADANI S. Particle swarm optimization for task assignment problem [ J ]. Microprocessors and Microsys- tems, 2002, 26(8) : 363-371.

引证文献16

二级引证文献105

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部