期刊文献+

基于对称双线性模型的光照鲁棒性人脸表情识别 被引量:6

Illumination-robust Facial Expression Recognition Based on Symmetric Bilinear Model
下载PDF
导出
摘要 针对传统的光照预处理方法降低原始图像质量、丢失部分有效辨识信息的缺点,提出一种新颖的应用对称双线性模型来对人脸表情图像进行光照预处理的光照鲁棒性人脸表情识别方法.首先通过对称双线性模型将训练集图像分解为相互独立的光照因子和表情因子,并提取其光照因子.接下来提取含有未知光照的测试集表情图像的表情因子,并将其转换到训练集的若干个已知光照上,这样处理能够将任意光照的测试图像转换到相同的光照平台上,令所有测试图像的特征具有归一化特性.实验结果表明,本文所提光照预处理方法在识别性能上优于传统的光照预处理方法,应用在光照处理后的JAFFE表情库上识别率达到92.37%,表明其适用于光照鲁棒性人脸表情识别. This paper proposes a novel illumination-robust facial expression recognition method using symmetric bilinear model to overcome the disadvantage of traditional illumination preprocessing methods that can degrade the quality of input image and worsen recognition performance. Firstly, the illumination factors axe separated from the training database. Secondly, the expression factor is separated from testing image with arbitrary illumination. Thirdly, the testing image is transformed into a number of expression images exhibiting different illuminations of training database. Experimental results show that the proposed method is better than the traditional illumination preprocessing methods in recognition performance. The best recognition rate of 92.37 % is achieved in JAFFE database with illumination transformation, indicating this method is suitable for illumination-robust facial expression recognition.
出处 《自动化学报》 EI CSCD 北大核心 2012年第12期1933-1940,共8页 Acta Automatica Sinica
基金 吉林省科技发展计划重点项目(20071152) 吉林大学"985"工程仿生科技创新平台专项资金资助~~
关键词 对称双线性模型 光照预处理 光照鲁棒性 表情识别 Symmetric bilinear model, illumination preprocessing, illumination-robust, expression recognition
  • 相关文献

参考文献7

二级参考文献99

  • 1张晓华,山世光,曹波,高文,周德龙,赵德斌.CAS-PEAL大规模中国人脸图像数据库及其基本评测介绍[J].计算机辅助设计与图形学学报,2005,17(1):9-17. 被引量:40
  • 2文沁,汪增福.基于三维数据的人脸表情识别[J].计算机仿真,2005,22(7):99-103. 被引量:10
  • 3陈锻生,刘政凯.肤色检测技术综述[J].计算机学报,2006,29(2):194-207. 被引量:118
  • 4柴秀娟,山世光,卿来云,陈熙霖,高文.基于3D人脸重建的光照、姿态不变人脸识别[J].软件学报,2006,17(3):525-534. 被引量:54
  • 5刘晓旻,谭华春,章毓晋.人脸表情识别研究的新进展[J].中国图象图形学报,2006,11(10):1359-1368. 被引量:62
  • 6Adini Y, Moses Y, Ullman S. Face Recognition: The problem of compensating for changes in illumination direction [ J ]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1997, 19(7) : 721-732.
  • 7Georghiades A S, Belhumeur P N, Kriegman D J. From Few to Many: illumination cone models for face recognition under differing pose and lighting [ J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2001, 23(6) : 643-660.
  • 8Zhang L, Samaras D. Face recognition under variable lighting using harmonic image exemplars [ A ]. In: Proceedings of International Conference on Computer Vision and Pattern Recognition [ C ], Los Alamitos, CA, USA, 2003: 1-19.
  • 9Shashua A, Riklin-Raviv T. The Quotient Image: Class-based rerendering and recognition with varying illuminations [ J ]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2001, 23(2) : 129-139.
  • 10Lanitis A, Taylor C J, Cootes T F. Automatic face identification system using flexible appearance models [ J ]. Image and Vision Computing, 1995, 13(12): 393-401.

共引文献137

同被引文献44

  • 1陈国社,张青,李凡.基于多姿态多状态面部情绪模型的表情识别[J].华中科技大学学报(自然科学版),2004,32(8):60-62. 被引量:2
  • 2刘晓旻,谭华春,章毓晋.人脸表情识别研究的新进展[J].中国图象图形学报,2006,11(10):1359-1368. 被引量:62
  • 3谭华春,章毓晋.基于人脸相似度加权距离的非特定人表情识别[J].电子与信息学报,2007,29(2):455-459. 被引量:8
  • 4Carlotta Orsenigo,Carlo Vercellis.A comparative study of nonlinear manifold learning methods for cancer microarray data classification[J].Expert Systems With Applications.2012
  • 5Ya Chang,Changbo Hu,Rogerio Feris,Matthew Turk.Manifold based analysis of facial expression[J].Image and Vision Computing.2005(6)
  • 6Chapelle 0,Scholkopf B,Zien A.Semi-supervised learning [M].Cambridge:MIT Press,2006.
  • 7Yan H B,Ang Jr M H,Poo A N.Cross-dataset facial expression recognition[C]Proceedings of IEEE International Conference on Roboticsand Automation, Shanghai,2011:5985-5990.
  • 8Li W Q,Chen D S.Multi-pose face recognition combining tensor faceand manifold learning [C]Proceedings of the IEEE International Conference on Computer Science and Automation Engineering.Shanghai:IEEE Press,2011:543-547.
  • 9Wang J H,You J,LiQ,et al.Orthogonal discriminant vector for face recognition acrosspose[J].Pattern Recognition,2012,45(12):4069-4079.
  • 10Li A N,Shang S G,Gao W.Coupled bias-variance tradeoff for crossposeface recognition[J].IEEE Transactions Image Process,2012,21(1):305-315.

引证文献6

二级引证文献75

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部