期刊文献+

基于粒子群算法的改进DV-Hop定位算法 被引量:7

AN IMPROVED DV-HOP LOCALISATION ALGORITHM BASED ON PARTICLE SWARM OPTIMISATION
下载PDF
导出
摘要 针对无线传感器网络(WSNs)节点定位问题中DV-Hop算法的不足,提出利用粒子群优化算法对改进DV-Hop得到的估算位置校正。这种方法将定位问题看成一个多维优化问题,并且不需要任何额外硬件设备,也不会增加通信量。最后将仿真实验结果与改进DV-Hop算法进行比较,表明基于PSO算法优化的改进DV-Hop定位算法在优化性能上有所改进,有效提高了节点定位精度,证明该方法的有效性。 In order to overcome the disadvantage of DV-Hop algorithm for node localisation in wireless sensor networks ( WSNs), we sug- gest to use particle swarm optimisation (PSO) to correct the estimated position derived from the improved DV-Hop. This approach regards the localisation issue as a multidimensional optimisation problem and does not need any extra hardware devices as well as the increase in traffic. The simulation experimental results are compared with the improved DV-Hop at last, and they show that the improved DV-Hop localisation al- gorithm based on PSO does have the improvement in optimisation performance, and effectively raises the node positioning accuracy, which prove the validity of the presented method.
出处 《计算机应用与软件》 CSCD 北大核心 2012年第12期69-72,76,共5页 Computer Applications and Software
基金 国家自然科学基金项目(61170119) 无锡城市学院重点课题(WXCY-2011-GZ-006)
关键词 粒子群优化算法 定位 无线传感器网络DV—Hop算法 Particle swarm optimisation Localisation Wireless sensor networks DV-I-Igp
  • 引文网络
  • 相关文献

参考文献13

  • 1A I F,Su W,S Y,et al.A Survey on Sensor Networks[C]//Proc.IEEE Communications Magazine,2002,40:102-113.
  • 2Rappapport T S.Wireless Communications:Principles and Practice[M].Prentice Hall:New Jersey,1996:50-143.
  • 3G L,E D.Robust range estimation using acoustic and n multimodalsensing[C].IEEE International Conference on Intelligent Robots andSystems,2001,3:1312-1320.
  • 4Cheng X,Xue T A G,et al.TPS:a time-based positioning scheme foroutdoor wireless sensor networks[C].IEEE INFOCOM2004,HongKong,China,2004:2685-2696.
  • 5Niculescu D,Nath B.Ad Hoc Positioning System(APS)usting AoA[C].IEEE Conference on Computer Communications,New York:IEEE,2003:1734-1743.
  • 6Niculescu D,Nath B.DV based Positioning in Ad Hoc networks[C].Telecommunication System,Berllin:Springer,2003:267-280.
  • 7赵仕俊,孙美玲,唐懿芳.基于遗传模拟退火算法的无线传感器网络定位算法[J].计算机应用与软件,2009,26(10):189-192. 被引量:38
  • 8王驭风,王岩.基于矢量和粒子群优化的传感器网络节点定位[J].计算机应用,2009,29(1):309-311. 被引量:12
  • 9戴莹,王建平,张崇巍.无线传感器网络节点定位算法的研究与改进[J].传感技术学报,2010,23(4):567-570. 被引量:18
  • 10T D J.Statistical theory of passive location systems[J].IEEE Trans.on AES.1984,20(2)183-198.

二级参考文献34

  • 1王福豹,史龙,任丰原.无线传感器网络中的自身定位系统和算法[J].软件学报,2005,16(5):857-868. 被引量:673
  • 2NICOLESCU D , NATH B . Ad - Hoc Positioning Systems ( APS ) [C]// Proceedings of the 2001 IEEE Global Telecommunications Conference. San Antonio: IEEE Communications Society, 2001: 2926 - 2931.
  • 3NICULESCU D, NATH B. DV based positioning in Ad Hoc net- works[ J]. Journal of Telecommunication Systems, 2003, 22( 1/4): 267 - 280.
  • 4JAGOBA A, AITZOL Z. Malguki: An RSSI based Ad Hoc iocation algorithm[ J]. Microprocessors and MicrosYstems, 2004, 28( 8): 403 - 409.
  • 5KANNAN A, MAO GUOQIANG, VUCETIC B. Simulated annealing based wireless sensor network localization with flip ambiguity mitigation[ C]//IEEE 63rd Vehicular Technology Conference. [ S, l. ] : IEEE Press, 2006:1022 - 1026.
  • 6Aspnes J, Goldenberg D, Richard Yang Y. On the computational complexity of sensor network localization [ C ]//Proceedings of First International Workshop on Algorithmic Aspects of Wireless Sensor Networks, Turku, Finland, July 16,2004.
  • 7Mao G, Fidan B, et al. Wireless sensor network localization techniques [ J ]. Computer Networks, Elsevier,2007,51 (10) :2529 - 2553.
  • 8Wang S S, Shih K P, Chang C Y. Distributed direction-based localization in wireless sensor networks [ J ]. Computer Communications, Elsevier,2007:1424 - 1439.
  • 9Niculescu D,Nath B. Ad hoc positioning system (APS) [ J ]. In IEEE Globecom, San Antonio, USA,2001:2926 - 2931.
  • 10Niculescu D. Positioning in Ad Hoc Sensor Networks [ J ]. IEEE Network, 2004.

共引文献61

同被引文献80

  • 1王福豹,史龙,任丰原.无线传感器网络中的自身定位系统和算法[J].软件学报,2005,16(5):857-868. 被引量:673
  • 2陈维克,李文锋,首珩,袁兵.基于RSSI的无线传感器网络加权质心定位算法[J].武汉理工大学学报(交通科学与工程版),2006,30(2):265-268. 被引量:207
  • 3王树林,王戟,陈火旺,张波云.基于主成份分析的肿瘤分类检测算法研究[J].计算机工程与科学,2007,29(9):84-90. 被引量:9
  • 4Amitangshu Pal. Localization algorithms in wireless sensor networks: current approaches and future challenges. J of Networks Protocols and Algorithms, 2011, 2(1):45-74.
  • 5Kim S, Ko J G~ Yoon J, et al. Multiple-objective metric for placing multiple base stations in wireless sensor networks. Proceeding of the Second international Symposium on Wireless Pervasive Computing, 2007:627-630.
  • 6Eusuff M M, Lansey K E 2003 Water Resour, Plan ning Manag. 129 210.
  • 7Zhang Xuncai, Hu Xuemei, Cui Guangzhao, et al. An improved shuffled frog leaping algorithm with cogni- tive behavior[C]//Proc of the 7th World Congress on Intelligent Control and Antomation. New York: IEEE Press, 2008 : 6197-6202.
  • 8Pearson G,Robinson F,Gibson T B,et al.Mitogen-activated protein(MAP)kinase pathways:regulation and physiological functions[J].Endocrine reviews,2001,22(2):153-183.
  • 9Waghray A,Schober M,Feroze F,et al.Identification of differentially expressed genes by serial analysis of gene expression in human prostate cancer[J].Cancer research,2001,61(10):4283-4286.
  • 10Wang Y,Makedon F S,Ford J C,et al.Hyk Gene:a hybrid approach for selecting marker genes for phenotype classification using microarray gene expression data[J].Bioinformatics,2005,21(8):1530-1537.

引证文献7

二级引证文献9

相关主题

;
使用帮助 返回顶部