期刊文献+

基于欠采样的调制解调器设计 被引量:2

Design of Modulation and Demodulation Based on Undersampling
下载PDF
导出
摘要 为了解决应用在高速通信场合中的AD采样率受限的问题,介绍了一种基于欠采样的调制解调技术,提出了非均匀分数间隔均衡算法和基于可编程逻辑器件(FPGA)的调制解调器设计方法,并给出了主要测试结果,包括2 MHz、8 MHz和34 MHz这3种速率在不同信噪比下的误码率曲线。该技术相比传统的过采样方法性能有明显的改善,具有硬件实现简单、节约芯片资源、实用性强、性能良好以及同步稳定可靠等特点。 In order to solve the difficult problem that the AD sampling frequency is restricted in high-speed communication, this pa- per introduces a modulation and demodulation technology based on undersampling. The paper presents the algorithm of non-uniform fractional spaced equalizer and the design method based on FPGA,and finally gives the main test result,including three kinds of BER curves for different SNRs at the speed of 2 MHz,8 MHz and 34 MHz. Compared with traditional oversampling method,this technology is easy to implement and saves the chip resource, and has the characteristics of good practicability, good performance, stable and reliable synchronization etc.
出处 《无线电通信技术》 2012年第6期69-72,共4页 Radio Communications Technology
关键词 欠采样 调制 解调 非均匀分数间隔均衡器 undersampling modulation demodulation fractional spaced equalizer
  • 引文网络
  • 相关文献

参考文献5

二级参考文献35

共引文献14

同被引文献19

  • 1SCHMIDT R O.Multiple Emitter Location And Signal Parameter Estimation[J].IEEE Trans.Antennas Propag.,1986,34(3):276-280.
  • 2DONOHO D L.Compressed Sensing[J].IEEE Transactions on In-formation Theory,2006,52(4):1 289-1 306.
  • 3WANG Y,LEUS G,PANDHARIPANDE A.Direction Estimation Using Compressive Sampling Array Processing[J].IEEE 15th Workshop on Sta.Signal Process.,2009:626-629.
  • 4TROPP J A,GILBERT A C.Signal Recovery From Random Measurements via Orthogonal Matching Pursuit[J].IEEE Trans.Inf.Theory,2007,53(12):4 655-4 666.
  • 5YIN J H,CHEN T Q.Direction-of-arrival Estimation Using a Sparse Representation of Array Covariance Vectors[J].IEEE Trans.Signal Process.,2011,59(9):4 489-4 493.
  • 6COTTER S F,RAO B D,KJERSTI E,et al.Sparse Solutions to Linear Inverse Problems with Multiple Measurement Vectors[J].IEEE Trans.Signal Process,2005,53(7):2 477-2 488.
  • 7MISHALI M,ELDAR Y C.Reduce and Boost:Recovering Arbitrary Sets of Jointly Sparse Vectors[J].IEEE Trans.Signal Process,2008,56(10):4 692-4 702.
  • 8DONOHO D L.Compressed Sensing[J].IEEE Transactions on Information Theory,2006,52(4):1 289-1 306.
  • 9CANDES E J,ROMBERG J,TAO T.Robust Uncertainty Principles:Exact Signal Reconstruction from Highly Incomplete Frequency Information[J].IEEE Transactions on Information Theory,2006,52(2):489-509.
  • 10BABADI B,KALOUPTSIDIS N,TAROKH V.Asymptotic Achievability of the Cramér-Rao Bound for Noisy Compressive Sampling[J].IEEE Transactions on Signal Processing,2009,57(3):1 233-1 236.

引证文献2

二级引证文献5

;
使用帮助 返回顶部