期刊文献+

粗糙体变形特性对接触过程的应力与应变的影响 被引量:3

Impacts of rough solid deformation properties on stresses and strains during contact process
下载PDF
导出
摘要 运用W-M函数生成分形粗糙表面,建立一个新的双粗糙体接触模型,采用有限元方法模拟仿真了在粗糙体不同变形特性条件下的接触过程,并分析了接触表面的应力分布及不同接触位置的塑性应变随深度的变化规律.结果表明双粗糙接触表面的应力主要集中在个别的较高微凸体上,其应力最大值出现在微凸体肩部区域的位置;等效塑性应变在不同位置沿深度的变化,呈现出不同的规律,微凸体顶部区域沿深度方向的最大等效塑性应变均发生在次表层.材料表层下的塑性应变将会导致材料表层中的夹杂或微观缺陷周围萌生微孔和裂纹源.对比不同变形特性的模型,得出弹塑性-刚体模型的最大应力及应变值都大于弹塑性-弹塑性模型. By using the W- M function to form fractal rough surfaces, a novel dual-rough-contact body is established. With application of finite element method for contact process simulation under different deformation conditions, the stress distribution, as well as the plastic strains of different positions with depths, is analyzed. From the results, it is found that the main strain concentrations occur on higher individual asperities, the maximum value of which appears in the position of asperity shoulder region. In addition,the equivalent plastic strains with positions versus depths are different, whereas the maximum equivalent plastic strain in the top area of the asperities with different depths appears in the subsurface. Further elaborated, the plastic strain under material surface produces the microporous and cracking source around mixtures or micro-effects in material surface. With comparison of different models of deformation properties, the maximum stress and strain values of plastic-elastic/rigid-body models are higher than those of plastic-elastic/plastic-elastic ones.
出处 《中国工程机械学报》 2012年第4期379-383,共5页 Chinese Journal of Construction Machinery
基金 国家自然科学基金资助项目(51175085) 福建省自然科学基金资助项目(2011J01299 2012J01206) 福州大学科技发展基金资助项目(2010-XQ-13)
关键词 双粗糙表面 接触模型 应力 等效塑性应变 深度 dual-rough-surfaces contact model stress equivalent plastic strain depth
  • 相关文献

参考文献9

  • 1赖联锋,高诚辉,黄健萌.粗糙表面滑动摩擦接触模型研究的进展[J].中国工程机械学报,2011,9(2):134-138. 被引量:6
  • 2PEI L,HYUN S, MOLINARI J F, et al. Finite element modeling of elasto-plastic contact between rough surfaces[J]. Journal of the Mechanics and Physics of Solids,2005,53(11):2385- 2409.
  • 3MAJUMDAR A,BHUSHAN B. Fractal model of elastic-plastic contact between rough surfaces[J]. ASME Journal of Tribology, 1991,113 (1) : 1 - 11.
  • 4LISOWSKI Z, STOLARSKI T. An analysis of contact between a pair of surface asperities during sliding[J]. J Appl Mech, 1981,48 (3): 493 - 499.
  • 5KOGUT L, ETSION I, A static friction model for elastic-plastic contacting rough surfaces[J]. ASME Journal of Tribology, 2004,126 (1) : 34 - 40.
  • 6YANG J,KOMVOPOULOS K. A mechanics approach to static friction of elastic-plastic fractal surfaces[J]. ASME Journal of Tribology, 2005,127 (2) :315 - 324.
  • 7JAMARI J, ROOIJ M B, SCHIPPER D J. Plastic deterministic contact of rough surfaces[J]. ASME Journal of Tribology, 2007,129 (4) 957 - 962.
  • 8YAN W, KOMVOPOULOS K. Contact analysis of elastic-plastic fractal surfaces [J]. Journal of Applied Physics, 1998, 84 (7) :3617 - 3624.
  • 9黄健萌,高诚辉.弹塑性粗糙体/刚体平面滑动摩擦过程热力耦合分析[J].机械工程学报,2011,47(11):87-92. 被引量:25

二级参考文献54

  • 1GONG Z Q, KOMVOPOULOS K. Thermomechanical analysis of semi-int-mite solid in sliding contact with a fractal surface[J]. ASME J. Tribol., 2005, 127: 331-342.
  • 2HASAN S, ALAETTIN O. Thermomechanical analysis of elastoplastic medium in sliding contact with fractal surface[J]. Tribologylnternational, 2008, 41.. 783-796.
  • 3WANG Q, LIU G. A thermoelastic asperity contact model considering steady-state heat transfer[J]. STLE Tribology Transactions, 1999, 42(4): 763-770.
  • 4LIU G, WANG Q. Thermoelastic asperity contact, frictional shear, and parameter correlations[J]. ASME J Tribol., 2000, 122: 300-307.
  • 5HUANG J H, JU F D. Thermomechanical cracking due to moving frictional loads[J]. Wear, 1985, 102(1-2): 81-104.
  • 6POLONSKY IA, KEER L M. A fast and accurate method for numerical analysis of elastic layered contacts[J]. ASME J. Tribol., 2000, 122: 30-35.
  • 7LIU S, WANG Q. A three-dimensional thermomechanical model of contact between non-conforming rough surfaces[J].ASME J. Tribol., 2001, 123: 17-26.
  • 8LIU G, WANG Q, LIU S. A three-dimensional thermo-mechanical asperity contact model for two nominally flat surfaces in contact[J]. ASME J. Tribol., 2001, 123: 595-602.
  • 9LIU G, WANG Q, AO Y. Convenient formulas formodeling three-dimensional thermo-mechanical asperity contacts[J]. Tribology International, 2002, 35: 411-423.
  • 10BOUCLY V, NE'LIAS D, LIU S, et al. Contact of friction heating and plastic behavior[J]. ASME J. Tribol., 2005, 127: 355-364.

共引文献28

同被引文献25

  • 1王学智,于天彪,孙雪,张校通,王宛山.基于有限差分法的磨削温度场模拟[J].中国工程机械学报,2015,0(2):124-129. 被引量:5
  • 2李伯奎,左敦稳,刘远伟.轮廓支承长度率曲线的应用研究[J].润滑与密封,2006,31(1):114-116. 被引量:5
  • 3GREENWOOD J A, WILLIAMSON J B P. Contact of nomi- nally flat surfaces [J]. Proceedings of the Royal Society of LondorL Series A, Mathematical and Physical Sciences, 1966, 295(1442) :300-319.
  • 4GREENWOOD J A,TRIPP T H. The elastic contact of rough spheres [J]. ASME Journal of Applied Mechanics, 1967,34(1): 153-159.
  • 5CHANG W R, ETSION I, BOGY D B. An elastic-plastic model for the contact pf rough surface[J]. ASME Journal of Tribolo- gy, 1987,109(2) : 257-263.
  • 6BHUSHANB摩擦学导论[M].葛世荣译.北京:机械工业出版社,2006.
  • 7MAJUMDAR A,BHUSHAN B. Fractal model of elastic-plas- tic contact between rough surfaces [J]. ASME,Journal of Tri- bology, 1991,113 : 1-11.
  • 8WANG S,KOMVOPOULOS K. Fractal theory of the interra- cial temperature distribution in the slow sliding regime: Part I-Elastic contact and heat transfer analysis[J]. Journal of Tribology, 1994,116 (4), 812-823.
  • 9RUAN B, SALANT R F, GREEN I. A mixed lubrication model of liquid/gas mechanical face seals[J]. Tribology Transac- tions, 1997,40 (4) : 647-657.
  • 10魏龙,顾伯勤,冯秀,冯飞.机械密封摩擦副端面接触分形模型[J].化工学报,2009,60(10):2543-2548. 被引量:27

引证文献3

二级引证文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部