期刊文献+

固溶处理对Ti-3.0Al-2.3Cr-1.3Fe钛合金组织与力学性能的影响 被引量:7

Influence of solution treatment on microstructure and mechanical properties of Ti-3.0Al-2.3Cr-1.3Fe titanium alloy
下载PDF
导出
摘要 利用XRD、OM、SEM和TEM等技术研究固溶温度和冷却速度对Ti-3.0Al-2.3Cr-1.3Fe钛合金的显微组织及力学性能的影响。结果表明:该合金经过960℃固溶处理,水淬(WQ)后的组织主要由α′马氏体和β相组成,空冷(AC)后的组织主要由α相和残留β基体组成,炉冷(FC)后的组织为网篮组织,主要由大量集束α相及少量β相组成。空冷时随着热处理温度的升高,初生α相逐渐转变为β相;之后随着温度的升高,β晶粒长大。该合金的强度随着冷却速度的增加而增加,WQ后的强度最大,抗拉强度和屈服强度分别达到1 270和1 160 Mpa;AC后,断面收缩率最高为40%左右,而伸长率随冷却速度增加而降低。通过观察拉伸断口的SEM形貌发现,该合金在FC和AC后所表现出的断裂方式以韧性为主,WQ后的断裂以脆性断裂为主。 The effects solution temperature and cooling rate on the microstructure and mechanical properties of Ti-3.0Al-2.3Cr-1.3Fe titanium alloy were studied by means of XRD,OM,SEM and TEM.The results indicate that the microstructure of the alloy after water quenching consists of α′ martensite and metastable β phase,those after air cooling consists of α phase and residual β phase,and those after furnace cooling is typical basketweave microstructure which consists of colony α phase and little β phase.The primary α turns to β phase with temperature increasing,and then the β grain grows bigger when the temperature is above the phase transformation temperature.The strength of this alloy increases with the cooling rate increasing,after water quenching,the tensile strength and yield strength reach to 1 270 and 1 160 MPa,respectively.The reduction of area is nearly 40% after air cooling,the elongation decreases with the cooling rate increasing.Through observation of the fracture SEM morphology,the fracture way is toughness fracture after air cooling and furnace cooling,and is brittle fracture after water quenching.
出处 《中国有色金属学报》 EI CAS CSCD 北大核心 2012年第11期3015-3021,共7页 The Chinese Journal of Nonferrous Metals
基金 国际科技合作项目(2010DFA52280) 中国博士后科学基金资助项目(20100470260)
关键词 Ti-3 0Al-2 3Cr-1 3Fe 固溶 显微组织 力学性能 Ti-3.0Al-2.3Cr-1.3Fe solution microstructure mechanical properties
  • 相关文献

参考文献19

  • 1HARTMAN A.D, GERDEMANN S J, HANSEN J S. Producing lower-cost titanium for automotive applications[J]. Journal of the Minerals, Metals and Materials Society, 1998, 50(9):16-19.
  • 2张大军,张凤杰.钛合金在汽车轻量化中的应用[J].钛工业进展,2007,24(1):32-35. 被引量:5
  • 3FALLER K, (SAM)FROES F H. The use of titanium in family automobiles: Current trends[J]. Journal of the Minerals, Metals and Materials Society, 2001, 53(4): 27-28.
  • 4李中.钛及钛合金在汽车上的应用[J].中国有色金属学报,2010,20(S1):S1034-s1038.
  • 5李珍,孙建科.低成本钛合金的开发与应用[J].稀有金属材料与工程,2008,37(z3):973-976.
  • 6KAWABE Y. Research activities on cost effective metallurgy of titanium alloys in Japan.[C]//GORYN1N I V. Proceedings of 9th World Conference on Titanium, Russia Central. Saint Petersburg: Research Institute of Structural Materials PPOMETEY, 1999:1275-1282.
  • 7ESTEBAN P G, RUIZ-NAVAS E M, BOLZON L, GORDO E. Low-cost titanium alloys? Iron may hold the answers[J]. Metal Powder Report,2008, 63(4):24-27.
  • 8SEAGLE S R. The state of the USA titanium industry in 1995[J]. Materials Science and Engineering A,1996, 213: 1-7.
  • 9OGAWA M. Research and development of low cost titanium alloys[J]. Journal of Japan Institute of Light Metals, 2005, 55(11): 549-552.
  • 10赵永庆,李月璐,吴欢,冯亮,朱康英,刘彩利.低成本钛合金研究[J].稀有金属,2004,28(1):66-69. 被引量:36

二级参考文献45

共引文献217

同被引文献79

引证文献7

二级引证文献65

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部