摘要
获得了使得不等式Cα(a,b)H1-α(a,b)<L(a,b)<βC(a,b)+(1-β)H(a,b)对所有a,b>0且a≠b成立的α和β的最佳值,其中C(a,b)、H(a,b)、L(a,b)分别为a,b的反调和平均、调和平均和对数平均.
The best possible α and β were presented such that the double inequality Ca(a,b)H1-a(a,b)〈L(a,b)〈βC(a,b)+(1-β)H(a,b) held for all a,b 〉 Owith a≠b, where C(a,b) , H(a,b) , L(a, b) denoted the contraharmonie, harmonic and logarithmic means of a and b, respectively.
出处
《集美大学学报(自然科学版)》
CAS
2012年第6期465-468,共4页
Journal of Jimei University:Natural Science
关键词
对数平均
调和平均
反调和平均
logarithmic mean
harmonic mean
contraharmonic mean.