期刊文献+

恶劣天气下高速公路实时事故风险预测模型 被引量:23

Real time crash risk prediction model on freeways under nasty weather conditions
下载PDF
导出
摘要 先提取了美国加州I-880N高速公路上一段长为23km路段的实时交通流数据、事故数据和气象数据。然后采用Logistic模型建立了基于交通流数据和气象数据的事故风险预测模型。研究结果表明:天气条件对事故风险有显著影响,在雨天和雾天的比值比(Odds ratios)分别为6.4和4.4时,事故风险性分别提高了5.4和3.4倍。最后建立了不含天气参数的事故风险预测模型,结果表明:含有天气参数的实时事故风险模型预测精度为71.7%,不含天气参数的模型预测精度为66.5%,表明天气条件可以显著提高实时事故风险模型的预测精度。 The real time traffic flow data, crash data, crash data and weather condition data were extracted and collected from a 23-kin segment of freeway 1-880 N in the state of California of the United States. A real time crash risk prediction model on freeways was built based on the traffic flow data and weather data using the Logistic regression model. The data analysis results showed that the weather condition variables had significant impact on the likelihood of crash occurrence on freeways. The odds ratios for rainy and foggy days were 6.4 and 4.4 respectively, indicating that the crash risks for rainy and foggy days were 5. 4 and 3. 4 times respectively higher than that for clear days. A Logistic regression model was also built based on only real-time traffic flow data for the comparison purpose. The analysis results show that the prediction accuracy of the model with weather wariables was 71.7%, while it was 66.5% without these variables. The weater condition wtriables significantly enhance the prediction accaracy of the real-time crash risk prediction model on freeway.
出处 《吉林大学学报(工学版)》 EI CAS CSCD 北大核心 2013年第1期68-73,共6页 Journal of Jilin University:Engineering and Technology Edition
基金 国家道路交通安全科技行动计划项目(2009BAG13A07-5) '973'国家重点基础研究发展计划项目(2012CB725402) 江苏省研究生科研创新计划项目(CXZZ_0164) 教育部博士生学术新人奖项目
关键词 交通运输安全工程 高速公路 恶劣天气 实时事故风险 LOGISTIC回归模型 engineering of communications and transportation safety freeway nasty weather real time crash risk Logistic regression model
  • 相关文献

参考文献15

  • 1Qiu L, Nixon W A. Effects of adverse weather on traffic crashes systematic review and meta-analysis [J]. Transportation Research Record, 2008, 2055: 139-146.
  • 2Brodsky H, Hakkert A S. Risk of a road accident in rainy weather[J]. Accident Anal Prevention, 1988,20(2):161-176.
  • 3Andrey J, Yagar S. A temporal analysis of rainrelated crash risk[J]. Accident Anal Prevention, 1993, 25(4) :465-472.
  • 4Khattak A J, Knapp K K. Interstate highway crash injuries during winter snow and nonsnow events[J]. Transportation Research Record, 2001, 1746: 30-36.
  • 5Eisenberg D, Warner K E. Effects of snowfalls on motor vehicle collisions,injuries, and fatalities[J]. American Journal of Public Health, 2005, 95(2): 120-124.
  • 6Abdelaty M, Uddin N, Abdalla F, et al. Predicting freeway crashes based on loop detector data using matched case-control logistic regression[J]. Transportation Research Record, 2004, 1897: 88-95.
  • 7Abdel-aty M, Uddin N, Pande A. Split models for predicting multi-vehicle crashes during high-speed and low-speed operating conditions on freeways[J]. Transportation Research Record, 2005, 1908: 51- 58.
  • 8Abdelaty M, Pande A. Identifying crash propensity using specific traffic speed conditions[J]. Journal of Safety Research, 2005, 36(1): 97-108.
  • 9Lee C, Saccomanno F, Hellinga B. Analysis of crash precursors on instrumented freeways [J]. Transportation Research Record, 2002, 1784:1-8.
  • 10Lee C, Hellinga B, Saccomanno F. Real-time crash prediction model for application to crash prevention in freeway traffic[J]. Transportation Research Record, 2003, 2749: 67-77.

共引文献130

同被引文献152

引证文献23

二级引证文献87

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部