期刊文献+

主元分析中的稀疏性 被引量:8

Sparsity in Principal Component Analysis:A Survey
下载PDF
导出
摘要 主元分析是一种广泛应用的多元统计技术.在处理高维数据时,其结果的统计一致性与物理可解释性难以保证.引入以变量选择为目标的稀疏性约束,可有效缓解上述困难.基于最近10年的研究进展,本文阐述了稀疏性的基本概念和罚函数的设计标准,介绍了经典的稀疏性约束lasso及其多个变种:融合lasso、成组lasso、自适应lasso、弹性网等等.Lasso及其变种均可用作主元分析的约束,构建稀疏主元分析框架,但关键在于如何将稀疏主元转化为凸优化问题并快速求解.本文比较了稀疏主元的多种转化形式:奇异值分解、稀疏回归、低阶秩逼近、罚矩阵分解和半正定松弛.分析了基于最小角回归算法的一般lasso及广义lasso问题的求解方法.此外还初步探讨了函数型数据的稀疏主元分析问题. Principal component analysis (PCA) is a popular multivariate statistic technique. However, the principal compo- nent estimation is often inconsistent while the samples are high-dimensional, and the principal component meaning is unintelligible too. The above two difficulties can be partially overcome by variable selection with sparse conslraints. The basic concept of sparsity and the design standard of penalties were described in this survey. A typical sparse constraint, lasso, was introduced as well as its re- lated morphs:fused lasso, group lasso, adaptive lasso and elastic net. Any of these constraints can be added into PCA to build a framework of spars PCA, and the emphasis was on how to transform sparse PCA into a convex optimizing problem and quickly solve it.Many transforming styles on sparse PCA were compared: singular value decomposition, sparse regression, low rank matrix approximation, penalized matrix decomposition and semi-definite relaxations. The approaches to solving the common and generalized lasso problems were analyzed based on least angle regression (LAR). The element of sparse PCA in functional data was discussed as a prospect.
作者 向馗 李炳南
出处 《电子学报》 EI CAS CSCD 北大核心 2012年第12期2525-2532,共8页 Acta Electronica Sinica
基金 国家自然科学基金资助项目(No.61101022) 国家科技支撑计划课题(No.2009BAF40B03)
关键词 稀疏性 主元分析 lasso 凸优化 sparsity principal component analysis lasso (least absolute shrinkage and selection operator) convex optimiza- tion
  • 相关文献

参考文献47

  • 1I T Jolliffe. Principal Component Analysis,2nd ed[M].New York:springer-verlag,2002.
  • 2S Lee,F Zou,F A Wright. Convergence and prediction of principal component scores in high-dimensional settings[J].Annals of Statistics,2010,(06):3605-3629.
  • 3J Fan,R Li. Statistical challenges with high dimensionality:Feature selection in knowledge discovery[A].Zurich:European Mathematical Society,2006.595-622.
  • 4J Fan,J Lv. Sure independence screening for ultrahigh dimensional feature space[J].Journal of the Royal Statistical Society,Series B:Statistical Methodology,2008,(05):849-911.doi:10.1111/j.1467-9868.2008.00674.x.
  • 5T Hastie,R Tibshirani,J Friedman. The Elements of Statistical Learning Data Mining,Inference,and Prediction[M].New York:springer-verlag,2002.61-78.
  • 6D L Donoho,J Tanner. Precise undersampling theorems[J].Proceedings of the IEEE,2010,(06):913-924.
  • 7D L Donoho. Scanning the technology[J].Proceedings of the IEEE,2010,(06):910-912.
  • 8A M Bruckstein,D L Donoho,M Elad. From sparse solutions of systems of equations to sparse modeling of signals and images[J].SIAM Review,2009,(01):34-81.doi:10.1137/060657704.
  • 9J A Tropp. Just relax:Convex programming methods for identifying sparse signals in noise[J].IEEE Transactions on Information theory,2006,(03):1030-1051.
  • 10焦李成,杨淑媛,刘芳,侯彪.压缩感知回顾与展望[J].电子学报,2011,39(7):1651-1662. 被引量:317

二级参考文献112

  • 1张春梅,尹忠科,肖明霞.基于冗余字典的信号超完备表示与稀疏分解[J].科学通报,2006,51(6):628-633. 被引量:71
  • 2Stephane Mallat, Zhifeng Zhang. Matching pursuit with time- frequency dictionaries [ J]. IEEE Trans on Signal Processing, 1993,41 (12) :3397 - 3415.
  • 3Chen SS, Donoho DL, Saunders MA. Atomic decomposition by basis pursuit[ J]. SIAM Review,2001,43( 1 ) : 129 - 159.
  • 4Durka P J. Adaptive time-frequency parametfization of epileptic spikes[J]. Physical Review E,2004,69(05): 1914- 1918.
  • 5Piotr Durka J, Ircha D, Blinowska KJ. Stochastic time-frequency dictionaries for matching pursuit[ J]. IEEE Trans on Signal Processing, 2001,49 (3) : 507 - 510.
  • 6Durka P J, Szelenberger W, Blinowska KJ, et al. Adaptive lime- frequency parametrization in pharmaco EEG [ J ]. Journal of Neuroscience Methods, 2002,117( 1 ) :65 - 71.
  • 7Durka P J, Blinowska KJ. A unified time-frequency parametrization of EEG [J]. IEEE Engineering in Medicine and Biology,2001,20(5) :47 - 53.
  • 8G E. Chatfian, L Bergamini, M. Dondey, et al. A glossary of terms most commonly used by clinical electroencephalographers[J]. Clinical Neurophysiology, 1974,37 ( 5 ) : 538 - 48.
  • 9S B Wilson, R Emerson. Spike detection: A review and comparison of algorithms[ J]. Clinical Neurophysiology, 2002, 113 (12) : 1873 - 1881.
  • 10M Latka, Z Was, A Kozik, B. J West. Wavelet analysis of epileptic spikes [J]. Physical Review E, 2003,67 (5) : 2902 - 2907.

共引文献322

同被引文献124

  • 1肖应旺,徐保国.改进PCA在发酵过程监测与故障诊断中的应用[J].控制与决策,2005,20(5):571-574. 被引量:17
  • 2薄翠梅,李俊,陆爱晶,等.基于核函数和概率神经网络的TE过程监控研究[C]//Proceedings of the 26^th Chinese Control Conference,Zhangjiajie,China,2007:511-515.
  • 3蒋浩天.工业系统的故障检测与诊断[M].北京:机械工业出版社,2003..
  • 4Chiang L H. Russell E L, Braatz R D.Fault detectionand diagnosis in industrial systems[M].New York : Springer- Verlag, 2001 : 15-25.
  • 5Bishop C M.Pattem recognition and machine learning[M]. New York: Springer-Verlag : 2006 : 559-599.
  • 6Ding S.Model-based fault diagnosis techniques[M].New York : Springer-Verlag, 2008 : 13-49.
  • 7Jolliffe I T.Principal component analysis[M],2nd ed.New York : Springer-Verlag, 2002 : 167-195.
  • 8Qin S J.Statistical process monitoring:basics and beyond[J]. Chemometrics, 2003,17 : 480-502.
  • 9Benaicha A, Mourot G, Benothman K, et al.Determina- tion of principal component analysis models for sen- sor fault detection and isolation[J].International Journal of Control,2013,11(2) :296-305.
  • 10Chen Tao, Sun Yue.Probabilistic contribution analysis for statistical process monitoring: a missing variable approach[J].Control Engineering Practice, 2009, 17 (4) : 469-477.

引证文献8

二级引证文献30

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部