期刊文献+

基于人工蜂群的业务流异常状态检测方法 被引量:1

Detection method of anomaly traffic state based on artificial bee colony
下载PDF
导出
摘要 针对日益严重的网络安全问题,基于人工蜂群与聚类方法提出一种新的状态检测算法——DASA。该算法首先根据SKETCH方法和Hash函数建立业务流异常状态模型,并且利用人工蜂群技术实现对异常状态的检测。最后,以实际数据进行仿真实验,对比分析了样本数据与DASA算法检测的结果,发现DASA具有较好的适应性,而且聚类个数、丢弃阈值和邻域半径等因素对状态检测产生较大影响。 In order to deal with the worsening network security problem, a new state detection algorithm, detection method of Anomaly traffic State based-Artificial bee colony (DASA), was proposed by Artificial Bee Colony (ABC) and clustering. In this algorithm, the anomaly traffic model was presented with SKETCH and Hash function at first, and the anomaly state was detected based on ABC. Then, a simulation with actual data is conducted to compare the results between Sample and DASA, which shows that DASA has better adaptability. And it has large impact on state detection with clustering number, dropping threshold and domain radius.
作者 段谟意
出处 《计算机应用》 CSCD 北大核心 2013年第3期727-729,738,共4页 journal of Computer Applications
基金 全国教育科学"十二五"规划教育部规划项目(FJB110092)
关键词 业务流 异常状态 人工蜂群 聚类 traffic anomaly state Artificial Bee Colony (ABC) clustering
  • 相关文献

参考文献15

  • 1ASHFAQ A. A comparative evaluation of anomaly detectors under portscan attacks [ C] // Proceedings of the 1 lth International Sympo- sium on Recent Advances in Intrusion Detection. Berlin: Springer- Verlag, 2008:351-371.
  • 2FEI R. ADIC: an anomaly detection algorithm using incremental clustering[ J]. Journal of Infomaation and Computational Science, 2009, 6(2): 105l - 1057.
  • 3PASCHALIDIS L, CHEN Y. Anomaly detection in sensor networks based on large deviations of Markov chain model[ C]// Proceedings of the 47th IEEE Conference on Decision amt Control. Piscataway, NJ: |EEE Press, 2008:2338-2343,.
  • 4PATCHA A , PARK , An overview of anomaly detection tech - niques: existing solutions and latest technological trends[ J]. Corn- outer Networks, 2007. 51( 12/: 3448 -3470.
  • 5侯重远,江汉红,芮万智,刘亮.工业网络流量异常检测的概率主成分分析法[J].西安交通大学学报,2012,46(2):70-75. 被引量:22
  • 6ZAI Z, HAKAMI S, MOORS T, et al. Detection and identification of anomalies in wireless mesh networks using principal component a- nalysis[ J]. Journal of Interconnection Networks, 2009, 10(4) : 517-534.
  • 7张文铸,刘佳,袁坚,张林,山秀明.基于PCA的对等网络流量时空特性监测[J].清华大学学报(自然科学版),2010,50(4):561-564. 被引量:3
  • 8熊伟,胡汉平,王祖喜,杨越.基于突变级数的网络流量异常检测[J].华中科技大学学报(自然科学版),2011,39(1):28-31. 被引量:11
  • 9肖海军,王小非,洪帆,崔国华.基于特征选择和支持向量机的异常检测[J].华中科技大学学报(自然科学版),2008,36(3):99-102. 被引量:11
  • 10PASCHALIDIS I, SMARAGDAKIS G. Spalio-temporal network a- nomaly detection by assessing deviations of empirical measures[ J]. IEEE/ACM Transactions on Networking, 2009, 17 (3) : 685 - 697.

二级参考文献85

  • 1王欣,方滨兴.Hurst参数变化在网络流量异常检测中的应用[J].哈尔滨工业大学学报,2005,37(8):1046-1049. 被引量:14
  • 2包潘晴,杨明福.基于KPCA和SVM的网络入侵检测[J].计算机应用与软件,2006,23(2):125-127. 被引量:19
  • 3David F. P2P file sharing-The evolving distribution chain [EB/OL]. (2006). http://www.dcia. info/aetivities/p2pmswde 2006/ferguson. pdf.
  • 4Greenberg A, Hjalmtysson G, Maltz A, et al. A clean slate 4D approach to network control and management [J]. ACM SIGCOMM Computer Communication Review, 2005, 35(5) : 41 -54.
  • 5Ripeanu M, Foster I, Iamnitchi A. Mapping the Gnutella network: Properties of large-scale peer-to-peer systems and implications for system design [J]. IEEE Internet Computing Journal, 2002, 6(1) : 50 - 57.
  • 6Stutzbach D, Rejaie R, Sen S. Characterizing unstructured overlay topologies in modern P2P file-sharing systems [J]. Networking, IEEE/ACM Transactions on, 2008, 16(2) 267 - 280.
  • 7Gummadi K P, Dunn R J, Saroiu S, et al. Measurement, modeling, and analysis of a peer-to-peer file-sharing workload [J]. ACM SIGOPS Operating Systems Review, 2003, 37(5) : 314- 329.
  • 8Stutzbach D, Rejaie R. Characterizing churn in peer-to-peer networks. Technical Report, CIS-TR-2005-03 [R]. USA: University of Oregon, 2005.
  • 9Sang A, Li S. A predictability analysis of network traffic[J]. Computer Networks, 2002, 39(4): 329- 345.
  • 10Magnaghi A, Hamada T, Katsuyama T. A wavelet- based framework for proactive detection of network misconfigurations[C]//ACM SIGCOMM' 04 Workshops. Oregon.. ACM Press, 2004: 253- 258.

共引文献60

同被引文献2

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部