期刊文献+

基于上下文模型的混合傅里叶-小波图像降噪方法 被引量:4

Fourier-wavelet image reduction using context-based model
下载PDF
导出
摘要 针对小波变换和傅里叶变换去除图像噪声时各具不同的优点和不足,提出一种基于上下文模型的混合傅里叶小波图像降噪方法。首先在傅里叶-域中估计原始图像的功率谱密度,运用维纳滤波器降噪,降低原始图像噪声水平;再在小波域中通过基于上下文模型的自适应阈值法去除剩余噪声;在小波域中使用平稳小波变换分解图像信号得到分解后的系列小波系数,根据小波系数间的相关性,利用上下文模型求取小波系数的方差,将其代入由GGD模型估计出的阈值表达式得到自适应阈值,再用软阈值函数对小波系数进行处理,最后将处理后的小波系数进行小波逆变换完成去噪。仿真结果表明:该方法不仅能够有效滤除图像噪声,而且能够保留图像的边缘细节信号,抑制降噪引起的吉布斯现象。 The strengths and weaknesses of Fourier transform and wavelet transform were discussed in the process of image-denoising.The image noise reduction methods were proposed using Fourier-wavelet transforms context-based model.The original image noise level was reduced by estimation of power spectral density of the original image in the Fourier domain and the use of Wiener filter.The remaining noise was removed by using adaptive wavelet threshold method based on context modeling.A series of wavelet coefficients were obtained by using the stationary wavelet transform to decompose the image signal.According to the correlation among those coefficients,the variance of wavelet coefficients was calculated by using the context model.The adaptive threshold was acquired by substituting the variance into the threshold expression estimated by the GGD model.Processing wavelet coefficients with soft thresholding function,the image denoise was completed by means of the wavelet inverse transform to wavelet coefficients.Simulation results show that the methods proposed can not only effectively filter out image noise,but also keep the edges of the image detail signal well and inhibit Gibbs phenomenon caused by noise reduction.
出处 《中南大学学报(自然科学版)》 EI CAS CSCD 北大核心 2013年第1期166-171,共6页 Journal of Central South University:Science and Technology
基金 国家自然科学基金资助项目(61071025) 中南大学学位论文创新基金资助项目(2010ssxt012)
关键词 上下文模型 傅里叶-小波变换 图像去噪 context model Fourier-wavelet transform image denoising
  • 相关文献

参考文献14

  • 1Shi F,Selesnick I W. An elliptically contoured exponential mixture model for wavelet based image denoising[J].Applied and Computational Harmonic Analysis,2007,(01):131-151.
  • 2郭强,郁松年.基于三变量模型的剪切波去噪方法[J].自动化学报,2010,36(8):1062-1072. 被引量:14
  • 3袁修贵,王军,黄修建,张泊.基于小波变换的一种图像增强去噪算法[J].中南大学学报(自然科学版),2005,36(2):298-301. 被引量:15
  • 4王远干,喻洪麟,朱传新.M周期分数傅里叶变换的光栅信号去噪方法[J].光电工程,2006,33(7):110-114. 被引量:1
  • 5Mahbubur S M,Rahman M.Omair A. Improved restoration using wavelet-based denoising and fourier-based deconvolution[J].ImageProcessing,2008,(02):249-251.
  • 6Grace S,Martin V. Spatially adaptive wavelet thresholding with context modeling for image denoising[J].Image Processing,2000,(09):1522-1531.
  • 7Wang H X,Robert S H. Microarry image enhancement by denoising using stationary wavelet transform[J].Transactions on Nanobioscience,2003,(04):184-188.
  • 8Donoho D L,Johnston I M. Ideal spatial adaptation by wavelet shrinkage[J].IEEE Transactions on Image Processing,1994,(03):425-455.
  • 9Chang S,Yu B,Vetterli M. Spatially adaptive wavelet thresholding with context modeling for image denoising[J].IEEE Transactions on Image Processing,2000,(09):1522-1531.doi:10.1109/83.862630.
  • 10董世都,杨小帆,黄同愿.一种基于三维小波系数上下文模型的视频压缩方法[J].小型微型计算机系统,2005,26(11):2021-2024. 被引量:1

二级参考文献48

  • 1芮挺,王金岩,沈春林,丁健.采用离散余弦变换的小波图像去噪方法[J].光电工程,2005,32(1):51-54. 被引量:9
  • 2王远干,喻洪麟,黄良明.基于M周期离散分数傅里叶变换的数字水印算法[J].计算机应用研究,2005,22(2):229-230. 被引量:11
  • 3高玉凯,邓正隆.小波变换与卡尔曼滤波结合的RLG降噪方法[J].光电工程,2005,32(5):31-34. 被引量:9
  • 4崔锦泰 程正兴(译).小波分析导论[M].西安:西安交通大学出版社,1995..
  • 5Cho D, Bui T D. Multivariate statistical modeling for image denoising using wavelet transforms. Signal Processing: Image Communication, 2005, 20(1): 77-89.
  • 6Wang Z, Bovik A C. Mean squared error: love it or leave it? a new look at signal fidelity measures. IEEE Signal Processing Magazine, 2009, 26(1): 98-117.
  • 7Chang S, Yu B, Vetterli M. Spatially adaptive wavelet thresholding with context modeling for image denoising. IEEE Transactions on Image Processing, 2000, 9(9): 1522-1531.
  • 8Shi F, Selesnick I W. An elliptically contoured exponential mixture model for wavelet based image denoising. Applied and Computational Harmonic Analysis, 2007, 23(1): 131-151.
  • 9Donoho D L. De-noising by soft-thresholding. IEEE Transactions on Information Theory, 1995, 41(3): 613-627.
  • 10Sendur L, Selesnick I W. Bivariate shrinkage function for wavelet-based denoising exploiting interscale dependency. IEEE Transactions on Signal Processing, 2002, 50(11): 2744-2756.

共引文献27

同被引文献51

引证文献4

二级引证文献6

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部