期刊文献+

基于概率神经网络模型的异步电机故障诊断 被引量:10

Based on Probabilistic Neural Network Model for Asynchronous Motor Fault Diagnosis
下载PDF
导出
摘要 针对传统故障诊断方法的局限性,提出一种基于概率神经网络(PNN)的诊断方法。以异步电机转子断条、偏心、失电残压等故障为例进行了诊断研究,通过选取故障样本来训练PNN,将故障信息输入训练好的PNN模型后,由输出结果即可判断发生的故障种类。MATLAB仿真表明,基于PNN的电机故障诊断方法能有效识别出电机故障,故障诊断准确率高,易于工程实现。但神经网络还处于发展阶段,仍有不少问题需进一步研究。 According to the limitation of traditional fault diagnosis method, a diagnosis method based on probabilistic neural network was proposed. An example of asynchronous motor rotor with broken, eccentric, electric residual pressure fault was done. By choosing fault samples to train PNN, and then inputting the diagnosis information to the trained model of PNN, the occurred fault types could be judged from the output results. MATLAB simulation showed that diagnosis method of the motor based on probabilistic neural network could effectively identify motor fault and the fault diagnostic accuracy rate was so high that it could be easily implemented in engineering projection. But as neural network itself was undergoing developing, many problems need to be further studied.
作者 李天玉 吴楠
出处 《电机与控制应用》 北大核心 2013年第1期35-38,42,共5页 Electric machines & control application
关键词 故障诊断 概率神经网络 模式分类 转子断条 气隙偏心 失电残压 fault diagnosis probabilistic neural network (PNN) pattern classification rotor broken air gap eccentric electric residual pressure
  • 相关文献

参考文献4

二级参考文献16

共引文献46

同被引文献79

引证文献10

二级引证文献43

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部