期刊文献+

任意阶自催化反应扩散系统的正平衡态

Positive Steady States in a Reaction-Diffusion System with Arbitrary Powers of Autocatalysis
下载PDF
导出
摘要 研究了一个任意阶自催化反应扩散系统的正平衡态.在解的先验估计基础上,利用隐函数定理及拓扑度理论,获得了该系统非常数正平衡态解的不存在性与存在性结论.结果表明,在一个化学反应系统中,不同的扩散系数或催化剂阶数对系统的模式生成起着不同的作用. Positive steady states in a reaction-diffusion system with arbitrary powers of autocatalysis are considered. Based on a priori estimates, non-existence and existence of non-constant positive steady state solutions are shown by using implicit function theorem and topological degree theory, respectively. The results show that in a chemical model, different diffusions or autocatalysis orders may play essentially different roles in developing spatial patterns.
作者 鲁元海
机构地区 中山市东区中学
出处 《汕头大学学报(自然科学版)》 2013年第1期14-21,共8页 Journal of Shantou University:Natural Science Edition
关键词 自催化化学系统 任意阶催化剂 Leray—Schauder度 正平衡态 autocatalytic chemical system arbitrary powers of autocatalysis Leray-Schauder degree positive steady states
  • 相关文献

参考文献9

  • 1张丽,刘三阳.一类高次自催化耦合反应扩散系统的分歧和斑图[J].应用数学和力学,2007,28(9):1102-1114. 被引量:4
  • 2张棣,陈治融.低浓度三分子反应模型[J].科学通报,1982,31(21):1281-1284. 被引量:12
  • 3陈兰荪,王东达.一个生物化学反应的振动现象[J].数学物理学报,1985,5(3):261-266.
  • 4Kay A L, Needham D J, Leach J A. Travelling waves for a coupled, singular reaction-diffusion system arising from a model of fractional order autocatalysis with decay: I. Permanent form travelling waves[J]. Nonlinearity, 2003,16(2): 735-770.
  • 5Wang M X. Non- constant positive steady- states of the Sel'kov model[J]. Journal of DifferentialEquations, 2003, 190(2). 600-620.
  • 6Lou Y, Ni W M. Diffusion vs. cross-diffusion: an elliptic approach[J]. Journal of Differential Equations, 1999,154: 157-190.
  • 7Peng R, Wang M X. Positive steady- state solutions of the Noyes- Field model for Belousov- Zhabotinskii reaction[J]. Nonlinear Analysis, 2004, 56(3) : 451-464.
  • 8Nirenberg L. Topics in Nonlinear Functional Analysis [M]. American Mathematical Society, Providence, RI: 2001.
  • 9Pang P Y H, Wang M X. Qualitative analysis of a ratio- dependent predator- prey system with diffusion[J]. Proceedings of the Royal Society of Edinburgh: Section A Mathematics. 2003,133(4): 919-942.

二级参考文献12

  • 1David J Wollkind,Laura E Stephenson.Chemical Turing pattern formation analyses:comparision of theory with experiment[ J].SIAM J Appl Math,2000,61(2):387-431.
  • 2Hill R,Merkin J H.Patten formation in a coupled cubic autocatalator system[ J].IMA J Appl Math,1994,53(3):265-322.
  • 3Hill R,Merkin J H,Needham D J.Stable pattern and standing wave formtion in a simple isothermal cubic autocatalytic reaction scheme[ J ].Journal of Engineering Mathematics,1995,29 (3):413-436.
  • 4Hill R,Merkin J H.The effects of coupling on pattern formation a simple autocatalytic system[ J].IMA J Appl Math,1995,54(3):257-281.
  • 5Metcalf M J,Merkin J H.Reaction diffusion waves in coupled isothermal autocatalytic chemical systems[J].IMA Journal of Applied Mathematics,1993,51(3):269-298.
  • 6Collier S M,Merkin J H,Scott S K.Multistability,oscillations and travelling waves in a product-feedback autocatalator model-Ⅱ:The initiation and propagation of travelling waves[ J].Phil Trans R Soc Lond A,1994,349(1691):389-415.
  • 7Merkin J H,Needham D J,Scott S K.Coupled reaction-diffusion waves in an isotherml autocatalytic chemical system[ J].IMA J Appl Math,1993,50(1):43-76.
  • 8Dezso Hovvath,Agota Toth,Turing patterns in a single-step autocatalytic reaction[ J].J Chem Soc Faraday Trans,1997,93(24):4301-4303.
  • 9Merkin J H,Sevcikova H,Snita D.The effect of an electric field on the local stoichiometry of front waves in an ionic chemical system[J].IMA J Appl Math,2000,64(2):157-188.
  • 10Merkin J H,Sevcikova H.The effects of a complexing agent on travelling waves in autocatalytic systems with applied electric fields[ J].IMA J Appl Math,2005,70(4):527-549.

共引文献15

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部