摘要
提出基于自联想神经网络的发动机数控系统的智能容错技术。该方法不依赖系统模型 ,只需要发动机的测量值来离线训练网络。若发生性能蜕化 ,该方法能自动切入故障诊断与最优估计的综合逻辑。文中开展了半物理仿真实验 ,实验结果充分证明了该技术能适应实验现场多变的环境 ,能正确诊断发动机传感器故障并提供解析余度 。
An intelligent fault tolerance technology based on autoassociative neural network is presented, which doesn′t depend on model, and needs only engine measurement to train the network, then it can work on line. If there is performance degeneration, a compensation algorithm will be automatically used. A matter in the loop simulation by using engine model and real control system is developed. The simulational results show that the proposed intelligent fault tolerance technology has good robust performance, and can detect sensor failures on time and present good accommodation to replace the failed sensors, even there is a lot of noise and performance degeneration
出处
《南京航空航天大学学报》
CAS
CSCD
北大核心
2000年第2期224-228,共5页
Journal of Nanjing University of Aeronautics & Astronautics
基金
航空科学基金 !(编号 :97C5 2 0 2 9)
中俄航空高校科技合作基金! (编号 :中俄 96 - 3)资助项目
关键词
发动机
数学控制
神经网络
智能容错技术
engine tests
digital control
neural networks
fault-olerant technique