摘要
首先从理论上分析有限采样影响下秩减估计器的波达方向估计性能,然后基于信号(或噪声)子空间的正交投影矩阵扰动定理,分别推导秩减估计器方位估计偏差的一阶和二阶闭式表达式,在此基础上给出其方位估计均方误差、偏置以及测向成功概率的理论计算公式,最后针对若干重要的秩减估计器给出数值实验,实验结果验证了所提理论推导的有效性。
The DOA estimation performance of the rank reduction estimator(RARE) in the case of finite samples was studied. Based on the perturbation theorem associated with the orthogonal projection matrix of the signal (or noise) sub space, the firstorder and secondorder formulas for the DOA estimation errors of the RARE were derived. Then, the closedform expressions for mean square error (MSE), bias and direction finding (DF) success probability of the RARE were presented. A variety of numerical experiments concerning some important RARE are conducted to verify the theo retical analysis.
出处
《通信学报》
EI
CSCD
北大核心
2013年第3期53-67,共15页
Journal on Communications
基金
国家自然科学基金资助项目(61201381)
信息工程学院未来发展基金资助项目(YP12JJ202057)~~
关键词
秩减估计器
MUSIC算法
有限采样
均方误差
偏置
成功概率
rank reduction estimator
MUSIC algorithm
finite samples
mean square error
bias
success probability