期刊文献+

一种结构光三维扫描系统新标定方法 被引量:4

A NEW CALIBRATION METHOD FOR STRUCTURED LIGHT 3D SCANNING SYSTEM
下载PDF
导出
摘要 结构光三维扫描系统需要借助精密的人工参照物进行标定,参照物的制作成本高且标定步骤复杂。针对此,提出一种新的标定方法。通过人工编码标记圆获得标定需要的同名点,采用因子分解方法得到射影空间下相机的投影矩阵和空间物点坐标,再借助旋转矩阵的单位正交性与绝对二次曲面秩为3的特性,将射影空间升级至欧式空间,并利用光束法平差进行全局优化。大量真实实验表明,所提出的标定方法稳定可靠,可达到和精密平板靶标同等的精度,并且硬件成本大大降低。 Structured light 3D scanning system needs to use delicate artificial reference to calibrate,but the reference costs a lot in making and the calibration process is complicated as well.To solve this problem,a new calibration method is proposed.In the method,the corresponding points needed by the calibration are generated by using the circles with artificial coding.The factorisation method is used to compute camera projection matrix and spatial object coordinates in projective space,then with orthogonality of the rotation matrix and rank 3 of the absolute quadric as constraint,the projective space is upgraded to Euclidean space,and the bundle adjustment is used to carry out global optimisation.A great deal of real experiments show that the proposed method is stable and reliable,and can achieve same precision level as the result using delicate plate target but with much lower hardware cost.
出处 《计算机应用与软件》 CSCD 北大核心 2013年第3期151-153,共3页 Computer Applications and Software
基金 云南省应用基础研究项目(2010CD094) 昆明学院校级课题基金项目(XJ11G004) 西南交通大学牵引动力国家重点实验室自主课题(2012TPL_T10)
关键词 光学扫描系统 标定 因子分解 光束法平差 Optical scanning system Calibration Factorisation Bundle adjustment
  • 引文网络
  • 相关文献

参考文献7

二级参考文献58

共引文献88

同被引文献37

  • 1姚吉利.3维坐标转换参数直接计算的严密公式[J].测绘通报,2006(5):7-10. 被引量:82
  • 2田庆国,葛宝臻,杜朴,郁道银,吕且妮.基于激光三维扫描的人体特征尺寸测量[J].光学精密工程,2007,15(1):84-88. 被引量:51
  • 3SINAN N, ROZ1ATI Z, SAMEEM A K. Detecting face in colored images using multi-skin color models and neural net- work with texture analysis [J]. Malaysian Journal of Computer Science, 2013, 26(2): 101-123.
  • 4STEFANOS Z, GRAY A A, MARK F H, et al. Face recogni- tion and verification using photometric stereo: the photoface da- tabase and a comprehensive evaluation [J]. IEEE Transactions on Information Forensics and Security, 2013, 8( 1 ) : 121-135.
  • 5FEMANDES S, BALA J. Periormance analysis of PCA-based and LAD-based algorithms for face recognition [J]. International Journal of Signal Processing Systems, 2013, 1 ( 1 ) : 1-6.
  • 6KATS1MEROU C, REDI J A, HEYNDERICKX I. Face detec- tion in intelligent ambiences witb colored illumination [C]//Pro- ceedings nf 2013 International Symposium on Ambient Intelli- gence. Salamanca: Springer, 2013: 1954204.
  • 7TORU N, TAKAHIRO H, TETSUYA T, et al. RGB-D based 3D-object recognition by LLC using depth spatial pyramid [J]. Information and Communication Engineers, 2013, 112 (441) : 43 -48.
  • 8SURYA P A, SHAILJA S. Automatic face detection using color based segmentation & eigen face-based facial recognition [J]. International Journal of Enhanced Research in Science Tech- nology & Engineering, 2013, 2(11) : 1-10.
  • 9FANHAI X, SHAHREL A S. Fusion of multi color space for human skin region segmentation [J]. International Journal of In- formation and Electronics Engineering, 2013, 3(2): 172-174.
  • 10Tian Qingguo,Yang Yujie,Zhang Xiangyu,et al.An experimental evaluation method for the performance of a laser line scanning system with multiple sensors[J].Optics and Lasers in Engineering,2014,52:241-249.

引证文献4

二级引证文献11

;
使用帮助 返回顶部