期刊文献+

分数阶Bloch方程的解

Solving the fractional order Bloch equation
原文传递
导出
摘要 讨论了具有3个分数阶导数参数的Bloch方程组,其解通过Laplace变换得到,可用H-Fox函数表示。图形显示,经典Bloch方程组的解为本研究的特例。 The fractional derivative Bloch equations with three fractional derivative parameters are discussed, and their solution is obtained by using Laplace transform techniques and can be expressed in terms of H-Fox functions. The fig- ures in this paper show that the solution of the classical Bloch equations is the special case of the fractional Bloch equa- tions discussed in this paper.
作者 黎明 徐明瑜
出处 《山东大学学报(理学版)》 CAS CSCD 北大核心 2013年第1期56-61,共6页 Journal of Shandong University(Natural Science)
基金 国家自然科学基金资助项目(10272067)
关键词 BLOCH方程 核磁共振 分数阶导数 H-Fox函数 Bloch equation nuclear magnetic resonance fractional derivative H-Fox function
  • 相关文献

参考文献10

  • 1BLOCH F. Nuclear induction[J]. Physical Review, 1946, 70 :460-473.
  • 2MAGIN R, FENG X, BALEANU D. Solving the fractional order Bloch equation[J]. Concepts Magn Reson , Part A, 2009, 34A(1) :16-23.
  • 3PETRAs I. Modeling and numerical analysis of fractional-order Bloch equations[J]. Computers and Mathematics with Appli-cations, 2011,61 :341-356.
  • 4MAGIN R L, LI W, VELASCO M P, et al. Anomalous NMR relaxation in cartilage matrix components and native cartilage: Fractional-order models[J].Journal of Magnetic Resonance, 2011, 21O( 2) : 184-191.
  • 5BHALEKAR S, DAFTARDAR-GEJ JI V, BALEANU D, et al. Fractional Bloch equation with delay[J]. Computers and Mathematics with Applications, 2011, 61: 1355 -1365.
  • 6BHALEKAR S, DAFTARDAR-GEJ JI V, BALEANU D, et al. Transient chaos in fractional Bloch equations[J]. Computers and Mathematics with Applications,2012,doi:lO. 1016/j. camwa. 2012.01. 069.
  • 7PODLUBNY I. Fractional differential equations[MJ. San Diego: Academic Press, 1999.
  • 8MAINARDI F, GORENFLO R. On Mittag-Leffler-Type function in fractional evolution processes[J].J Comput Appl Math, 2000, 118(2) :283-299.
  • 9METZLER R, KLAFTERJ. The random walk's guide to anomalous diffusion: a fractional dynamics approach[J]. Physics Reports, 2000, 339(1) : 1-77.
  • 10MATHAI A M, SAXENA R K, HAUBOLD HJ. The H-Function: theory and applicationsj M}. Berlin: Springer, 2010.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部