期刊文献+

基于波动分析的海上小目标检测 被引量:6

Small Target Detection within Sea Clutter Based on the Fluctuation Analysis
下载PDF
导出
摘要 该文通过建立不同尺度下的平均波动,分析了海杂波的自仿射性质,提出一种基于波动分析的海上小弱目标检测方案。根据波动曲线的线性特征,以q阶归一化波动曲线斜率作为区分目标和海杂波的分形特征值。对实测数据的试验结果表明,该文方法对不同环境、不同极化情况下获取的实测数据能够从海杂波背景下可靠地检测出目标。 Based on the fluctuation analysis, a novel approach for target detection in sea clutter is proposed. The self-affinity and scaling behaviors of sea clutter is analyzed by using the mean fluctuation. The q order normalized slope of fluctuation curve, as the characteristic parameter, is suggested to describe the fractal property of the target and sea clutter. The tests on the real data show that the target could be clearly distinguished from the sea clutter background with the proposed approach.
出处 《电子与信息学报》 EI CSCD 北大核心 2013年第4期882-887,共6页 Journal of Electronics & Information Technology
关键词 目标检测 分形 海杂波 自仿射 波动分析 Target detection Fractal Sea clutter Self-affine Fluctuation analysis
  • 引文网络
  • 相关文献

参考文献13

  • 1陈小龙,刘宁波,宋杰,关键,何友.海杂波FRFT域分形特征判别及动目标检测方法[J].电子与信息学报,2011,33(4):823-830. 被引量:23
  • 2刘宁波,黄勇,关键,何友.实测海杂波频域分形特性分析[J].电子与信息学报,2012,34(4):929-935. 被引量:17
  • 3Pournejatian N M and Nayebi M M. Fractai-multiresolution based detection of targets within sea clutter[J[. Electrorgcs Letters, 2012, 48(6): 345- 347.
  • 4Xu Zhan, Wan Jian-wei, Li Gang, et al.. Target detection within sea clutter based on multifractal detrended fluctuation analysis[J]. Advanced Engineer'ing Forum, 2012, 4:259- 262.
  • 5Zhou Yi-feng, Yip P C, and Leung H. On the efcient prediction of fractal signals[J]. IEEE Transaction.s on Signal Processing, 1997, 45(7): 1865-1868.
  • 6Hu Jing, Gao Jian-bo, Posner F L, et al.. Target detection within sea clutter: a comparative study by fractal scaling analyses[J]. F*nctals, 2006, 14(3): 187 -204.
  • 7Hu Jing, Tlmg Wen-wen, and Gao Jian-bo. Detection of low observable targets within sea clutter by structure function based multifractal analysis[J]. IEEE Transactions ov Antennas aTtd Propagation, 2006, 54(1): 136-143.
  • 8Meyers R A. Encyclopedia of Complexity and Systems Science[M]. New York: SpringerScience+Buisinessbledia, LLC., 2009:3754- 3778.
  • 9Malamud B D and Turcotte D L. Self-affine time series: measures of weak and strong persistence[J]. Journal of Statistical Planning and Inference, 1999, 80(1, 2): 173-196.
  • 10Peng C K, Buldyrev S V, Goldberger A L, et al.. Long-range correlation in nucleotide sequences[J]. Nature, 1992, 356(6365): 168 -170.

二级参考文献89

  • 1冯德军,陶华敏,丹梅,肖顺平,王国玉.弹道目标雷达宽带识别仿真与评估[J].系统仿真学报,2006,18(1):225-228. 被引量:7
  • 2贺涛,周正欧.基于分形自仿射的混沌时间序列预测[J].物理学报,2007,56(2):693-700. 被引量:25
  • 3包永强,赵力,邹采荣.噪声环境下语音分形特征的提取和分析[J].电子与信息学报,2007,29(3):585-588. 被引量:4
  • 4Freund Y, Iyer R, Schapire R E, et al. An Efficient Boosting Al-gorithm for Combining Preferences//Proc of the International Con-ference on Machine Learning. Madison, USA, 1998:170-178.
  • 5Herschtal A, Raskutti B. Optimizing Area under the ROC Curve Using Gradient Descent//Proc of the 21 st International Conference on Machine Learning. Banff, Canada, 2004:49-56.
  • 6Rakotomamonjy A. Optimizing AUC with Support Vector Machine (SVM) // Proc of the European Conference on Artificial Intelli-gence Workshop on ROC Analysis and Artificial Intelligence. Valen-cia, Spain, 2004:71-80.
  • 7Rakotomamonjy A. Quadratic Programming fur AUC Optimization // Proc of the 2nd International Conference on Modelling, Computa-tion and Optimization in Information Systems and Management Sci-ences. Metz, France, 2004:603-610.
  • 8Fawcett T. An Introduction to ROC Analysis. Pattern Recognition Letters, 2006, 27(8) : 861-874.
  • 9Rosset S. Model Selection via the AUC//Proc of the 21st Interna-tional Conference on Machine Learning. Banff, Canada, 2004:89-97.
  • 10Wu S, Flach P. A Scored AUC Metric for Classifier Evaluation and Selection// Proc of the ICML Workshop on ROC Analysis in Ma-chine Learning. Bonn, Germany, 2005 : 247-262.

共引文献86

同被引文献80

引证文献6

二级引证文献34

;
使用帮助 返回顶部