期刊文献+

基于自适应邻域选择的局部判别投影算法 被引量:2

Local Discriminant Projection Algorithm Based on Adaptive Neighborhood Selection
下载PDF
导出
摘要 在多模数据分类中,使用局部Fisher判别分析和边界Fisher分析方法构建邻域不能充分反映流形学习对邻域的要求。为此,提出一种基于自适应邻域选择的局部判别投影算法。采用自适应方法扩大或者缩小近邻系数k,以构建邻域,从而保持局部线性结构,揭示流形的内在几何结构,利用局部化方法使得投影空间中同类近邻样本尽量紧凑、异类近邻样本尽量分开。在ORL和YALE人脸数据库中进行实验,结果表明,在不同训练样本个数下,该算法均能获得较高的识别率。 Aiming at the drawback that Local Fisher Discriminant Analysis(LFDA)algorithm and the Marginal Fisher Analysis(MFA) algorithm solve the problem of multimodal data classification and construct a reasonable neighborhood for each point. A local discriminant projection algorithm based on adaptive neighborhood selection is proposed in this paper. An adaptive algorithm to expand or narrow neighbor coefficient k is adopted to keep the local linear structure. So it perfectly detects the intrinsic geometric structure of manifold. The underlying idea of the new method is that the desired projection should make neighbors of the same class close and neighbors of different classes apart. Doing test on the ORL and the YALE face database, the results show that this algorithm can achieve higher recognition rate under different training samples.
作者 秦娜 桑凤娟
出处 《计算机工程》 CAS CSCD 2013年第4期194-198,共5页 Computer Engineering
基金 甘肃省自然科学基金资助项目(0803RJZA109) 甘肃省科技攻关计划基金资助项目(2GS035-A052-011)
关键词 邻域选择 线性判别分析 流形学习 人脸识别 降维 子空间 neighborhood selection Linear Discriminant Analysis(LDA) manifold learning face recognition dimensionalityreduction subspace
  • 相关文献

参考文献14

  • 1刘青山,卢汉清,马颂德.综述人脸识别中的子空间方法[J].自动化学报,2003,29(6):900-911. 被引量:117
  • 2Turk M P. A Eigenfaces for Recognition[J]. Journal Cognitive Neuroscience, 1991, 3(1): 71-86.
  • 3Martinez A M, Kak A C. PCA Versus LDA[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2001, 23(2): 228-233.
  • 4罗四维,赵连伟.基于谱图理论的流形学习算法[J].计算机研究与发展,2006,43(7):1173-1179. 被引量:76
  • 5Tenenbaum J B, Silva D V, Langford J C..A Global Geometric Framework for Nonlinear Dimensionality Reduction[J]. Science, 2000, 290(5500): 2319-2323.
  • 6Belkin M, Niyogi P. Laplacian Eigenmaps for Di- mensionality Reduction and Data Representation[J]. Neural Computation, 2003, 15(6): 1373-1396.
  • 7Roweis S T, Saul L K. Nonlinear Dimensionality Re- duction by Locally Linear Embedding[J]. Science, 2000, 290(5500): 2323-2326.
  • 8Bengio Y, Palement J, Vincent P, et al. Out-of-sample Extensions for LLE, Isomap, MDS, Eigenmaps, and Spectral Clustering[J]. Neural Computation, 2004, 16(10): 2179-2219.
  • 9Yang Jian, Zhang D, Yang Jingyu, et al. Globally Max- imizing, Locally Minimizing: Unsupervised Discriminant Projection with Applications to Face and Palm Biometrics[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2007, 29(4): 650-664.
  • 10He Xiaofei, Yah Shuicheng, Hu Yuxiao, et al. Face Recognition Using Laplacianfaces[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2005, 27(3): 328-340.

二级参考文献150

  • 1张振跃,查宏远.线性低秩逼近与非线性降维[J].中国科学(A辑),2005,35(3):273-285. 被引量:8
  • 2杨剑,李伏欣,王珏.一种改进的局部切空间排列算法[J].软件学报,2005,16(9):1584-1590. 被引量:36
  • 3罗四维,赵连伟.基于谱图理论的流形学习算法[J].计算机研究与发展,2006,43(7):1173-1179. 被引量:76
  • 4邵超,黄厚宽,赵连伟.一种更具拓扑稳定性的ISOMAP算法[J].软件学报,2007,18(4):869-877. 被引量:20
  • 5Jolliffe I T. Principal Component Analysis [M]. New York: Springer, 1989.
  • 6Cox T F, Cox M A A. Multidimensional Scaling [M]. Florida:Chapman and Hall, 1994.
  • 7Duda R O, Hart P E, Stork D G. Pattern Classification [M]. New York: John Wiley & Sons, 2001.
  • 8Tenenbaum J B, Silva V D, Langford J C. A global geometric framework for nonlinear dimensionality reduction[J]. Science, 2000, 290(5500):2319-2323.
  • 9Roweis S T, Saul L K. Nonlinear dimensionality reduction by locally linear embedding[J]. Science, 2000, 290(5500) : 2323-2326.
  • 10Donoho D L, Grimes C. Hessian eigenmaps: Locally linear embedding techniques for high-dimensional data [J]. Proc of the National Academy of Sciences of USA, 2003, 100(10): 5591-5596.

共引文献213

同被引文献14

引证文献2

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部