摘要
研究一个周期受击陀螺系统的经典动力学与准能谱统计.发现在打击强度较弱(λ≤2.0)时,经典相空间的运动是规则的,最近邻能级间距分布呈泊松型;当打击强度λ≥2.5时,经典相空间的结构随着固定点(π/2,0)和(π/2,π)的干草叉(pitchfork)分岔变得越来越复杂直至λ≥6时的完全混沌.这时最近邻能级间距分布也由近泊松型朝着维格那型转化.文章中也计算了谱刚度、数方差、偏斜度、过度、数平均等统计量.
This paper studies the classical dynamics and quasienergy spectral statistics for a periodically kicked free top. It is found that at weak kicking strength(λ≤2.0) , the motion in classical phase space is regular, the nearest neighbor spacing distribution for the quasienergy levels is approximately Poisson type;and at λ≥2.5, with the pitchfork bifurcation of the fixed points(π/2,0)and(π/2,π),the structure of the phase space becomes more and more complicate until becomes completely chaotic at λ≥6, and then the nearest neighbor spacing distribution for the energy levels changes from Poissonian to Wiguer type gradually. We also calculated spectral rigidity, number variance, skewness, excess, and number average.
出处
《南京师大学报(自然科学版)》
CAS
CSCD
北大核心
2013年第1期48-53,共6页
Journal of Nanjing Normal University(Natural Science Edition)
关键词
陀螺
准能谱统计
相空间
干草叉分岔
free top, quasienergy spectral statistics, phase space, pitchfork bifurcation.