期刊文献+

周期受击陀螺的经典动力学及准能谱统计 被引量:1

Classical Dynamics and Quasienergy Spectral Statistics for a Periodically Kicked Free Top
下载PDF
导出
摘要 研究一个周期受击陀螺系统的经典动力学与准能谱统计.发现在打击强度较弱(λ≤2.0)时,经典相空间的运动是规则的,最近邻能级间距分布呈泊松型;当打击强度λ≥2.5时,经典相空间的结构随着固定点(π/2,0)和(π/2,π)的干草叉(pitchfork)分岔变得越来越复杂直至λ≥6时的完全混沌.这时最近邻能级间距分布也由近泊松型朝着维格那型转化.文章中也计算了谱刚度、数方差、偏斜度、过度、数平均等统计量. This paper studies the classical dynamics and quasienergy spectral statistics for a periodically kicked free top. It is found that at weak kicking strength(λ≤2.0) , the motion in classical phase space is regular, the nearest neighbor spacing distribution for the quasienergy levels is approximately Poisson type;and at λ≥2.5, with the pitchfork bifurcation of the fixed points(π/2,0)and(π/2,π),the structure of the phase space becomes more and more complicate until becomes completely chaotic at λ≥6, and then the nearest neighbor spacing distribution for the energy levels changes from Poissonian to Wiguer type gradually. We also calculated spectral rigidity, number variance, skewness, excess, and number average.
出处 《南京师大学报(自然科学版)》 CAS CSCD 北大核心 2013年第1期48-53,共6页 Journal of Nanjing Normal University(Natural Science Edition)
关键词 陀螺 准能谱统计 相空间 干草叉分岔 free top, quasienergy spectral statistics, phase space, pitchfork bifurcation.
  • 相关文献

参考文献12

  • 1杨双波,韦栋.周期受击简谐振子系统的经典与量子动力学[J].南京师大学报(自然科学版),2011,34(4):49-54. 被引量:4
  • 2杨双波,韦栋.周期受击简谐振子系统的经典动力学与准能谱统计[J].南京师大学报(自然科学版),2012,35(3):37-42. 被引量:2
  • 3Casati D, Chirikov BV, Izrailev FM, et al. Stochastic behavior of a quantum pendulum under a periodic perturbation [ M ]// Casati D, Ford J. Stochastic Behavior in Classical and Quantum Hamiltonian Systems, Leture Notes in Physics. Berlin: Springer-Verlag, 1979,93 : 334-352.
  • 4Nakamura K, Okazaki Y, Bishop A R. Periodically pulsed spin dynamics : scaling behavior of semiclassical wave functions [ J ]. Physical Review Letters, 1986,57 ( 1 ) :5-8.
  • 5Haak F. Quantum Signatures of Chaos [ M ]. Berlin, Heidelberg: Springer, 1991 : 52,169.
  • 6Mehta M L. Random Matrices and the Statistical Theory of Energy Levels [ M ]. New York:Academic, 1965.
  • 7Dyson F J, Mehta M L. Statistical theory of the energy levels of complex systems[ J ] J Math Phys, 1963,4(5 ) :701-712.
  • 8Huang Liang, Lai Yingcheng, Grebogi Celso. Characteristics of level-spacing statistics in chaotic graphene billiards [ J ]. Chaos, 2011,21,013102-1-013102-11.
  • 9Honig A, Wintgen D. Spectral properties of strongly perturbed Coulomb systems:fluctuation properties [ J ]. Physical Review A, 1989,39(6) :5 642-5 657.
  • 10Mehta M L. Random Matrices [ M ]. Second edition. San Diego : Academic Press, 1991.

二级参考文献18

  • 1Heller E J, O' Connor P W, Gehlen J. The eigenfunctions of classical chaostic systems[ J]. Physica Scripta, 1989, 40:354- 359.
  • 2Wintgen D, Marxer H, Briggs J S. Properties of off-shell coulomb radial wave functions [ J ]. J Phys A, 1987,20 :L965-L968.
  • 3Casati D, Chirikov B V, Ford J, et al. Stochastic behavior of a quantum pendulum under periodic perturbation[ M ]. Lect Notes Phys, 1979 93:334-352.
  • 4Komogrove A N. On conservation of conditionally periodic motion for small change in Hamilton function [ J]. Dokl Akad Nauk SSSR,1954, 98 : 527-530.
  • 5Arnold V I. Proof of a theorem of A. N. Komogrove of quasi-periodic motion[J]. Usp Mat Nauk SSSR,1963,18:13-40.
  • 6Moser J. On invariant curves of area-preserving mappings of an annulus [ J ]. Nachr Akad Wiss Gottingen Math--Phys, 1962, K1:1-20.
  • 7Zaslavsky G M, Zakharov My, Sagdeev R Z, et al. Stochastic web and diffusion of particles in a magnetic field [ J ]. Sov Phys JEPT, 1986,64:294-303.
  • 8Hu Bambi, Li Baowen, Liu Jie, et al. Quantum chaos of a kicked particle in an infinite potential well [J]. Phys Rev Lett, 1999,82:4 224-4 227.
  • 9Dana Itzhack, Amit Mary. General approach to diffusion of periodically kicked charges in a magnetic field [ J ]. Phys Rev E,1995,51 :R2 731-R2 734.
  • 10Casati G, Chirikov B V,Ford J, et al. Stochastic behavior of a quantum pendulum under periodic perturbation[ J]. LectNotes Phys,1979,93: 334-352.

共引文献3

同被引文献20

  • 1Tabor M. Chaos and Integrability in Nonlinear Dynamics:An Introduction [ M ]. New York:Wiley Interscienee, 1989.
  • 2Ozorio de Almeida A M. Hamiltonian Systems : Chaos and Quantization [ M ]. Cambridge: Cambridge University Press, 1988.
  • 3Gutzwiller M C. Chaos in Classical and Quantum Mechanics [ M ]. New York:Springer, 1990.
  • 4Stockmann H J. Quantum Chaos:An Introduction[ M]. Cambridge:Cambridge University Press, 1999.
  • 5Ott E. Chaos in Dynamical Systems[ M ]. Cambridge:Cambridge University Press.2002.
  • 6Seligman T H, Verbaarschot J M,Zirnbauer M R. Quantum spectra and transition from regular to chaotic classical motion[ J ]. Phys Rev Lett, 1984,53:215-217.
  • 7Davis M J, Heller E J. Multidimensional wave functions from classical trajectories[I J]. J Chem Phys, 1981,75:3 916-3 924.
  • 8Stratt R M, Handy N C, Miller W H. On the quantum mechanical implications of classical ergodicity[ J]. J Chem Phys, 1979, 71:3 311-3 322.
  • 9McDonald S W. Wave Dynamics of Regualr and Chaotic Rays [ D ]. Berkeley: Physics Department, Univ of California at Berkeley, 1983.
  • 10Heller E J. Bound-state eigenfunctions of classically chaotic Hamiltonian systems-scars of periodic orbits [ J ]. Phys Rev Lett, 1984,53:1 515-1 519.

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部