摘要
目的:采用文本挖掘方法,探索中医药治疗胆结石药证对应规律。方法:在CBM数据库中收集中医药治疗胆结石文献数据,采用基于敏感关键词频数统计的数据分层算法,挖掘胆结石的证候及治疗胆结石的中药。结合人工降噪及数据清洗后,通过一维频次表及二维的网络图分析中医药治疗胆结石药证规律。结果:胆结石肝胆湿热、肝郁气滞为最主要证候,肝郁脾虚及气滞血瘀为常见证型。柴胡、大黄、金钱草、茵陈、鸡内金为治疗胆结石的核心药物,且与其他药物联用的频数也最高。定向挖掘结果显示治疗胆结石肝胆湿热证的药物与胆结石常用药物基本一致。结论:利用文本挖掘技术,可以从海量的文献中发现治疗胆结石的中医证、药的规律,为中医药规范化及中药组方研究,提供有益的方法学探索和参考。
Objective :To explore the principle of pattern-herbs of Chinese medicine on gallstones by text mining analysis. Methods :The literatures about gallstones from Chinese Bio-Medical literature database was collected. The rules of TCM pattern and Chinese herbal medicines were studied by data slicing algorithm. The results were shown in frequency tables and 2 - dimention networks. Results :The pattern of damp - heat of liver and gallbladder and Qi - stagnation of liver were the main TCM syndromes. Spleen deficiency and blood stagnation were the common patterns. The center TCM herbs of gallstone were Radix Bupleuri, Rheum palmatum L. , Lysimachia christinae Hance, Artemisiacapillaris Thunb, and chicken's gizzard. As was shown in directional mining, lhe center herbs for damp -heat pattern were similar with those treatments for gallstones. Conclusion:Text mining, together with artificial reading for anti-noising, is an important approach in exploring the rules of TCM syndrome, herbs. This method can provide useful help for Chinese medicine research.
出处
《辽宁中医杂志》
CAS
2013年第4期664-666,共3页
Liaoning Journal of Traditional Chinese Medicine
基金
国家自然科学基金面上项目(30973975)
自然基金杰青项目(30825047)
面上项目(30973975)
青年基金项目(30902003)
中国中医科学院自主选题(Z0172)
关键词
文本挖掘
数据分层算法
胆结石
证候
中药
text mining
data slicing algorithm
gallstones
TCM pattern
Chinese herbal medicine