期刊文献+

核具有连续横截面的保序变换半群的秩 被引量:11

On Semigroup Rank of Order-Preserving Transformations Which Kernel with Continuous Transversal
下载PDF
导出
摘要 设自然数n≥5,Xn={1,2,…,n},On是Xn上的保序变换半群,OCKn是由On中核具有连续横截面的元所构成的子半群,证明了OCKn的秩为n. Let n≥5,Xn={1,2,…,n}, On be semigroup of order-preserving transformations on Xn,OCKn be subsemigroup consisting of kernel with continuous transversal in On We have proved that the rank of OCKn is n.
作者 高荣海 徐波
出处 《西南师范大学学报(自然科学版)》 CAS CSCD 北大核心 2013年第4期18-24,共7页 Journal of Southwest China Normal University(Natural Science Edition)
基金 国家自然科学基金资助项目(11161010)
关键词 保序 连续横截面 半群 order-preserving continuous transversal semigroup rank
  • 相关文献

参考文献13

  • 1GOMES G M S, HOWIE J M. On the Ranks of Certain Semigroups of Order-Preserving Transformations [J]. Semig- roup Forum, 1992, 45(1): 272-282.
  • 2GARBA G U. On the Idempotent Ranks of Certain Semigroups of Order Preserving Transform-Ations [J]. Portugal Math, 1994, 51: 185-204.
  • 3YANG Xiu-liang. On the Nilpotent Ranks of the Factors Oforder-Preserving Transformation Semi Groups [J]. Semig- roup Forum, 1998, 57(3): 331-340.
  • 4XU Bo, ZHAO Ping, LI Jun-yang. Locally Maximal Idempotent-Generated Subsemigroups of Singular Order-Preserving Transformation Semigroups [J]. Semigroup Forum, 2006, 72: 488-492.
  • 5YANG Xiu-liang, LU Chuan-han. Maximal Properties of Some Subsemigroups in Finite Order-Preserving Transforma- tion Semigroups [J]. Communications in Algebra, 2000, 28: 3125-3135.
  • 6裴惠生,邹定宇,李连兵.降序且保序的有限全变换半群(英文)[J].信阳师范学院学报(自然科学版),2006,19(4):373-377. 被引量:5
  • 7徐波,冯荣权,高荣海.一类变换半群的秩[J].数学的实践与认识,2010,40(8):222-224. 被引量:47
  • 8高荣海,徐波.关于保序压缩奇异变换半群的秩[J].山东大学学报(理学版),2011,46(6):4-7. 被引量:33
  • 9赵平,游泰杰,徐波.半群CPO_n的秩[J].西南大学学报(自然科学版),2011,33(6):106-110. 被引量:27
  • 10李先崇,赵平.半群犘犗PO_n(k)的幂等元秩[J].西南师范大学学报(自然科学版),2013,38(10):9-12. 被引量:9

二级参考文献42

  • 1罗敏霞,何华灿,马盈仓.一类具有恰当断面的左恰当半群[J].西南师范大学学报(自然科学版),2005,30(3):373-376. 被引量:3
  • 2裴惠生.一类拓扑空间的闭自映射半群[J].信阳师范学院学报(自然科学版),2005,18(3):249-251. 被引量:1
  • 3Barnes G and Levi I. On idempotent ranks of semigroups of partial transformations[J]. Semigroup Forum, 2005(70): 81-96.
  • 4Cherubini A, Howie J M and Piochi B. Rank and status in semigroup theory[J]. Commun Algebra, 2004(32): 2783-2801.
  • 5Garba G U. On the idempotent ranks of certain semigroups of order-preserving transformations[J]. Portugal Math, 1994(51): 185-204.
  • 6Gomes G M S and Howie J M. On the ranks of certain semigroups of order-preserving transformations[J]. Semigroup Forum, 1992(45): 272-282.
  • 7Gomes G M S and Howie J M. On the ranks of certain finite semigroups of transformations[J]. Math Proc Camb Phil Soc, 1987(101): 395-403.
  • 8Howie J M and Ribeiro M I M. Rank properties in finite semigroups[J]. Commun Algebra, 1999(27): 5333-5347.
  • 9Howie J M and McFadden R B. Idempotent rank in finite full transformation semigroups[J]. Proc Roy Soc Edinburgh Sect A, 1990(155): 161-167.
  • 10Levi I. Nilpotent ranks of semigroups of partial transformations[J]. Semigroup Forum, 2006(72): 459-476.

共引文献62

同被引文献55

  • 1HaoBoYANG XiuLiangYANG.Maximal Subsemigroups of Finite Transformation Semigroups K(n,r)[J].Acta Mathematica Sinica,English Series,2004,20(3):475-482. 被引量:19
  • 2GOMES G M S, HOWIE J M. On the Ranks of Certain Finite Semigroups of Transformations [J]. Math Proc Camb Phil Soc, 1987, 101(3): 395-403.
  • 3GOMES G M S, HOWIE J M. On the Ranks of Certain Semigroups of Order-Preserving Transformations [J]. Semig- roupForum, 1992, 45(1): 272 -282.
  • 4GARBA G U. On the Idempotent Ranks of Certain Semigroups of Order Preserving Transformations [J].Portugal Math, 1994, 51(2): 185-204.
  • 5YANG Xiu liang. On the Nilpotent Ranks of the Principal Factors of Order-Preserving Transformation Semigroups[J]. Semigroup Forum, 1998, 57(3): 331-340.
  • 6BARNES G, LEVI I. On Idempotent Ranks of Semigroups of Partial Transformations [J]. Semigroup Forum, 2005, 70(1): 81-96.
  • 7LEVI I. Nilpotent Ranks of Semigroups of Partial Transformations [J]. Semigroup Forum, 2006, 72(3) : 459-476.
  • 8XU Bo, ZHAO Ping, LI Jun-yang. Locally Maximal Idempotent-Generated Subsemigroups of Singular Order Preserving Transformation Semigroups [J]. Semigroup Forum, 2006, 72(3): 488-492.
  • 9Fernandes V H. The monoid of all injective order preserving partial transformation on a finite chain[J].SEMIGROUP FORUM,2001,(02):178-204.
  • 10Fernandes V H. The monoid of all injective orientation preserving partial transformations on a finite chain[J].COMMUNICATIONS IN ALGEBRA,2000,(07):3401-3426.

引证文献11

二级引证文献35

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部