期刊文献+

基于局部投影降噪和FSVDD的网络流量异常检测 被引量:6

Network traffic anomaly detection based on local projection denoise and FSVDD
下载PDF
导出
摘要 现有残差比较等异常检测方法只能在突变阶段检测异常,检测率较低。综合考虑网络流量中包含的所有特征,对网络中的多种协议流量指标分别进行局部投影降噪处理,将各流量分解为流量趋势部分和噪声流量部分,以这两部分为参量通过支持向量数据描述建立检测模型,并通过对样本的模糊化处理提高模型的泛化性。实验表明该方法适合于检测拒绝服务攻击引起的流量异常,与传统的阈值比较方法相比能够获得更高的异常检测率和更低的误报率。 The present network traffic anomaly detection methods such as residual detection could detect anomaly at the break moment only, the detection rate was low. This paper denoised the multiple protocols of network traffic by local projection me- thod, it decomposed the traffic into trend part, and noise part and considered them in the detection. It also established the de- tection model by SVDD, and introduced the fuzzy logic to enhance the model' s generalization. The experiments on DoS at- tacks detection show that the proposed method can detect the anomaly well. Compared to the traditional methods, it gets higher detection rate and lower false alarm rate.
出处 《计算机应用研究》 CSCD 北大核心 2013年第5期1523-1526,共4页 Application Research of Computers
基金 国家自然科学基金资助项目(61003252) 全军军事学研究生课题资助项目(2011JY002-524) 空军工程大学创新基金资助项目(201105)
关键词 局部投影降噪 模糊逻辑 支持向量数据描述 异常检测 local projection denoise fuzzy logic SVDD anomaly detection
  • 相关文献

参考文献13

  • 1CASAS P, VATON S, FILLATRE L, et al. Optimal volume anomaly detection and isolation in large-scale IP networks using coarse-grained measurements[ J]. Computer Networks,2010,54( 11 ) : 1750-1766.
  • 2LAKHINA A, CROVELLA M, DIOT C. Mining anomalies using traf- fic feature distributions [ C ]//Proc of Conference on Applications, Technologies, Architectures, and Protocols for Computer Communica- tions. New York :ACM Press,2005:217-228.
  • 3朱应武,杨家海,张金祥.基于流量信息结构的异常检测[J].软件学报,2010,21(10):2573-2583. 被引量:36
  • 4LAKINA A, CROVELLA M, DIOT C. Diagrlosing network-wide traf- fic anomalies [ C ]//Proc of Conference on Application,Technologries, Architectures, and Protocols for Computer Communications. New York : ACM Press ,2004. :219-230.
  • 5侯重远,江汉红,芮万智,刘亮.工业网络流量异常检测的概率主成分分析法[J].西安交通大学学报,2012,46(2):70-75. 被引量:22
  • 6曹敏,程东年,张建辉,吴曦.基于自适应阈值的网络流量异常检测算法[J].计算机工程,2009,35(19):164-166. 被引量:24
  • 7邹柏贤.一种网络异常实时检测方法[J].计算机学报,2003,26(8):940-947. 被引量:43
  • 8颜若愚,郑庆华,牛国林.自适应滤波实时网络流量异常检测方法[J].西安交通大学学报,2009,43(12):1-5. 被引量:5
  • 9YU J, LEE H, KIM M S, et al. Traffic flooding attack detection with SNMP MIB Using SVM [ J]. Computer Communications, 2008,31 (17) :4212-4219.
  • 10EPHRAIM Y, Van TREES H L. A signal subspace approach for speech enhancement[J]. IEEE Trans on Speech and Audio Pro- cessing, 1995,3(4) :251-266.

二级参考文献57

  • 1姚婷婷,郑庆华,管晓宏,陈秀真.一种基于主机实时流量的安全评估方法[J].西安交通大学学报,2006,40(4):415-419. 被引量:3
  • 2阳建宏,徐金梧,杨德斌,黎敏.邻域自适应选取的局部投影非线性降噪方法[J].振动与冲击,2006,25(4):64-67. 被引量:16
  • 3韩敏,刘玉花,史志伟,项牧.改进局部投影算法的混沌降噪研究[J].系统仿真学报,2007,19(2):364-368. 被引量:16
  • 4Alarcon-Aquio V, Barria J A. Anomaly Detection in Communication Networks Using Wavelets[J]. IEE Proceeding-Communication, 2001, 148(6): 355-362.
  • 5邹伯贤.网络流量异常检测与预测方法研究.微电子学与计算机,2002,31(2):1-6.
  • 6Jin Siying, Yeung D S. A Covariance Analysis Model for DDoS Attack Detection[C]//Proc. of the Int'l Conf. on Communications. [S. l.]: IEEE Press, 2004.
  • 7Feinstein L, Schnackenberg D, Balupari R, et al. Statistical Approaches to DDoS Attack Detection and Response[C]//Proc. of the DARPA Information Survivability Conf. and Exposition. [S.l.]: IEEE Press, 2007.
  • 8Kawata T, Horita T, Terachi S. Effect of noise on chaotic behavior in Roessler type nonlinear system[ J]. International Journal of Intelligent Systems, 1997, 12(4) : 341--357.
  • 9Kostelich E J, Schreiber T. Noise reduction in chaotic time-series data: A survey of common methods[ J ]. Physical Review E, 1993, 48(3): 1752--1763.
  • 10Han M, Liu Y H, Xi J H G, et al. Noise smoothing for nonlinear time series using wavelet soft threshold[J]. IEEE Signal Processing Letters, 2007, 14( 1 ) : 62---65.

共引文献120

同被引文献46

引证文献6

二级引证文献42

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部