期刊文献+

有机工质低温余热发电系统多目标优化设计 被引量:16

Multi-objective Optimization of Low-temperature Waste-heat ORC Power Generation Systems
下载PDF
导出
摘要 针对现有有机朗肯循环单目标优化设计的局限性,从热力性、经济性等多方面对有机工质低温余热发电系统进行多目标优化设计.以系统效率最大和总投资费用最小为目标函数,选取透平进口温度、透平进口压力、余热锅炉节点温差、接近点温差和冷凝器端差等5个关键热力参数作为决策变量,利用非支配解排序遗传算法(NSGA-II)分别对采用R123、R245fa和异丁烷的有机工质余热发电系统进行多目标优化,获得不同工质的多目标优化的最优解集(Pareto最优前沿),并采用理想点辅助法从最优解集中选择出最优解及相应的系统最佳热力参数组合.结果表明:在给定余热条件下,从热力性能和经济性两方面考虑,R245fa是最优的有机工质,从多目标优化的最优解集中选择出的最佳效率为10.37%,最小总投资费用为455.84万元. Owing to the limitations of single-objective optimization on existing organic Rankine cycle (ORC) power generation system, a multi-objective optimization design was conducted for the low-tempera- ture waste-heat ORC power generation system from the point of view of thermodynamic and economic as- pects, by taking maximum exergy efficiency and minimum investment of system as the objective functions, selecting 5 key thermal parameters as the decision variables, such as turbine inlet temperature, turbine in- let pressure, pinch temperature difference, approach temperature difference and condenser temperature difference, etc., optimizing the ORC power generation system with working fluids R123, R245fa and isobutane using non-dominated sorting genetic algorithm (NSGA-II), and subsequently Pareto optimal so- lutions were obtained, from which the optimum design solution with optimal combinations of system ther- mal parameters was selected with the aid of an ideal point. Results show that under the given waste heat conditions, R245fa is the optimal working fluid in consideration of both the thermodynamic performance and the economic efficiency. The optimum solution shows an optimal exergy efficiency of 10.37% and a minimum investment of 4 558 400 Yuan.
出处 《动力工程学报》 CAS CSCD 北大核心 2013年第5期387-392,共6页 Journal of Chinese Society of Power Engineering
基金 国家自然科学青年基金资助项目(51106117) 国家科技支撑计划重点项目(2011BAA05B03) 陕西省自然科学基金资助项目(2011JQ7002)
关键词 有机朗肯循环 非支配解排序遗传算法 多目标优化 余热利用 organic Rankine cycle non-dominated sorting genetic algorithm multi-objective optimization waste heat recovery
  • 相关文献

参考文献11

  • 1韩中合,叶依林,刘赟.不同工质对太阳能有机朗肯循环系统性能的影响[J].动力工程学报,2012,32(3):229-234. 被引量:43
  • 2刘广林,鹿院卫,马重芳,吴玉庭.超临界地热有机朗肯循环工质参数优化[J].工程热物理学报,2010,31(11):1886-1888. 被引量:8
  • 3SCHUSTER A, KARELLAS S, AUMANN R. Effi- ciency optimization potential in supercritical organic Rankine cycles['J]. Energ.y,2010,35 (2) : 1033-1039.
  • 4汤元强,余岳峰.低温余热双循环发电系统的设计与优化[J].动力工程学报,2012,32(6):487-493. 被引量:9
  • 5ATRENS A D, GURGENCI H, RUDOLPH V. Eco- nomic optimization of a COz-based EGS power plant [J]. Energy & Fuels,2011,25(8) :3765-3775.
  • 6ARSLAN O, YETIK O. ANN based optimization of supercritical ORC-binary geothermal power plant: si- may case study [J]. Applied Thermal Engineering, 2011,31 (17/18) : 3922-3928.
  • 7ZHANG S J, WANG H X, GUO T. Performance comparison and parametric optimization of suheritical organic Rankine cycle (ORC) and transcritical power cycle system for low-temperature geothermal power generation[J]. Applied Energy, 2011, 88 (8): 2740- 2754.
  • 8CAYER E, GALANIS N, NESREDDINE H. Para- metric study and optimization of a transcritical power cycle using a low temperature source[J]. Applied En- ergy,2010,87(4) :1349-1357.
  • 9QUOILIN S,DECLAYE S,TCHANCHE B F,et al. Thermo-economic optimization of waste heat recovery organic Rankine cycles[J]. Applied Thermal Engineer- ing, 2011,31(14/15) :2885-2893.
  • 10DEB K. Multi-objective optimization using evolution- ary algorithms [M]. UK: John Wiley : Sons Ltd, 2001.

二级参考文献22

  • 1顾雏军,胡亮光,范文伯,王之安,张风山,王维.汽水全流及闪蒸发电系统能量利用率的比较[J].热能动力工程,1989,4(4):1-10. 被引量:2
  • 2魏东红,鲁雪生,顾建明,陆震.移动边界模型应用于废热驱动的有机朗肯循环系统的动态仿真[J].上海交通大学学报,2006,40(8):1394-1397. 被引量:13
  • 3Yamamoto T, Furuhate T, Arai N. Design and Testing of the Organic Rankine Cycle [J]. Energy, 2001, 26(3): 239- 251.
  • 4Cong C E, Velautham S, Darus A M. Sustainable Power: Solar Thermal Driven Organic Rankine Cycle [C]//Proceedings of the International Conferences on Recent Advances in Mechanical and Arterial Engineering. 2005. No.91.
  • 5Gawlik K, Hassani V. Advanced Binary Cycles: Optimum Working Fluid [C]//Proceedings of 32nd Intesociety Energy Conversion Engineering Conference (IECEC). 1977: 1809-1814.
  • 6Milora S L, Tester J W. Geothermal Energy as a Source of Electric Power [M]. Cambridge, MA: MIT Press; 1977.
  • 7Tetelbaum, Solomon. Supercritical Cycles with Low Boiling Working Liquids as a Concept for Power Generation [J]. Proceeding of the American Power Conference, 1994, 56(1): 513-517.
  • 8Gu Zhaolin, Haruki Sato. Performance of Supercritical Cycle for Geothermal Binary Design. Energy Conversion and Management [J]. Energy Conversion and Management, 2002, 43:961 971.
  • 9Madhawa Hettiarachchi H D, Mihajlo Golubovic, William M Worek, Yasuyuki Ikegami. Optimum Design Criteria for an Organic Rankine Cycle Using Low-Temperature Geothermal Heat Sources [J]. Energy. 2007, 32(9): 1598- 1706.
  • 10Karellas S, Schuster A. Supercritical Fluid Parameters in Organic Rankine Cycle Applications [J]. Int. J. of Thermodynamics, 2008, 11(3): 101-108.

共引文献57

同被引文献101

引证文献16

二级引证文献68

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部