期刊文献+

优化初始聚类中心的改进k-means算法 被引量:56

Improved k-means algorithm with meliorated initial centers
下载PDF
导出
摘要 传统k-means算法随机选取初始聚类中心使聚类结果不稳定,诸多优化算法的时间复杂度较高,为了提高聚类稳定性并降低时间复杂度,提出了基于个体轮廓系数自适应地选取优秀样本以确定初始聚类中心的改进k-means算法。该算法多次调用传统k-means算法聚类,根据k个类中心的个体轮廓系数以及各样本与类中心的距离,自适应地选取优秀样本,求其均值作为初始聚类中心。在多个UCI数据集上的实验表明,该算法聚类时间短,具有较高的轮廓系数和准确率。 The initial centers of the traditional k-means algorithm are randomly selected, so that the clustering results are uncertain. Many improved algorithms have a high time complexity. In order to enhance stability of clustering and reduce the time complexity, improved k-means algorithm which selects good samples adaptively based on individual silhouette coefficient to get initial centers is presented. Traditional k-means algorithm is used for some times to cluster data according to, the individual silhouette coefficient of k class centers and the distance between samples and class centers, good samples are choosen adaptively, the average value is used as initial centers. Tests on some UCI data sets show that this algorithm has shorter time to cluster data, higher silhouette coefficient and higher accuracy.
作者 张靖 段富
出处 《计算机工程与设计》 CSCD 北大核心 2013年第5期1691-1694,1699,共5页 Computer Engineering and Design
基金 山西省科技攻关基金项目(20080322008) 山西省自然科学基金项目(2008011039)
关键词 聚类 K均值算法 初始聚类中心 个体轮廓系数 自适应 clustering k-means algorithm initial cluster centers individual silhouette coefficient adaptation
  • 相关文献

参考文献11

二级参考文献61

共引文献477

同被引文献479

引证文献56

二级引证文献657

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部