期刊文献+

回热布雷顿空气循环回收内燃机废气余热的模拟 被引量:4

Modeling of the Regenerated Brayton Air Cycle for IC Engine Exhaust Energy Recovery
下载PDF
导出
摘要 为回收内燃机废气余热,基于回热布雷顿空气循环原理设计了一套底循环系统.针对不同的循环压力、空气流量、环境温度和内燃机排气温度,采用数值迭代的方法,对底循环传热过程和热力循环过程进行耦合计算,分析了底循环参数、排气参数和环境温度对废气余热回收效率的影响.结果表明:回热器的植入虽然回收了部分涡轮排气余热,但却抑制了换热器传热量;随着工质流量增加,回热器传热量先增后减,换热器传热量单调递增,回收效率先增后减;随着循环压力增加,回热器传热量单调递减,换热器传热量在中小流量范围递增,回收效率先增后减.排气温度越高、环境温度越低,回收效率越高.在排气温度为755,℃、环境温度为10,℃时,最大废气能量回收效率为7.2%,较标准布雷顿循环有一定提高. To recover the IC engine exhaust gas energy,a bottom cycle system based on the regenerated Brayton air cycle was proposed.Heat transfer and thermodynamic processes of bottom cycle were calculated at different air pressures,air mass flow rates,ambient temperatures and exhaust gas temperatures by numerical method.The effects of bottom cycle parameter,exhaust parameter and ambient temperature on exhaust energy recovery efficiency were analyzed.Results show that part of turbine exhaust energy is recovered by the regenerator,but the heat transfer amount of heat exchanger is changed.With the increase of working medium flow rate,heat transfer amount of regenerator first increases and then decreases.Heat transfer amount of heat exchanger is increased.Exhaust energy recovery efficiency first increases and then decreases.With the increase of cycle pressure,heat transfer amount of regenerator is decreased.Heat transfer amount of heat exchanger increases in the low and medium flow rate range.Exhaust energy recovery efficiency first increases and then decreases.Higher exhaust temperature and lower ambient temperature give higher exhaust energy recovery efficiency.At the exhaust temperature of 755,℃ and ambient temperature of 10,℃,the maximum energy recovery efficiency is 7.2%,which is higher than that of the standard Brayton air cycle.
出处 《内燃机学报》 EI CAS CSCD 北大核心 2013年第3期248-254,共7页 Transactions of Csice
基金 国家重点基础研究发展计划(973)资助项目(2011CB707201) 教育部博士研究生学术新人奖资助项目(教研函[2012]8号)
关键词 内燃机 布雷顿循环 余热回收 循环效率 回热 internal combustion engine bottom cycle waste heat recovery cycle efficiency regeneration
  • 相关文献

参考文献12

  • 1Alex M K P Taylor. Science review of internal combus-tion engines [J]. Energy Policy, 2008, 36(12) : 4657-4667.
  • 2Richard Stobart, Rohitha Weerasinghe. Heat recoveryand bottoming cycles for SI and Cl engines—A perspec-tive [C]. SAE Paper 2006-01-0662,2006.
  • 3Roy J P, Mishra M K, Misra Ashok. Parametric opti-mization and performance analysis of a waste heat recov-ery system using organic Rankine cycle [J]. Energy,2010, 35(12) : 5049-5062.
  • 4Kalyan K Srinivasan,Pedro J Mago,Sundar R Krish-nan. Analysis of exhaust waste heat recovery from a dualfuel low temperature combustion engine using an organicRankine cycle [J]. Energy, 2010,35(6) : 2387-2399.
  • 5Sandra Hounsham, Richard Stobart, Adam Cooke, etal. Energy recovery systems for engines [C]. SAE Paper2008-01-0309, 2008.
  • 6Diego A Arias, Timothy A Shedd, Ryan K Jester. Theo-retical analysis of waste heat recovery from an internalcombustion engine in a hybrid vehicle [C]. SAE Paper2006-01-1605,2006.
  • 7Fu Jianqin,Liu Jingping,Ren Chengqin,et al. Anopen steam power cycle used for IC engine exhaust gasenergy recovery [J]. Energy, 2012, 44(1): 544-554.
  • 8Liu J P,Fu J Q,Ren C Q,et al. Comparison andanalysis of engine exhaust gas energy recovery potentialthrough various bottom cycles [J]. Applied Thermal En-gineering, 2013,50(1) : 1219-1234.
  • 9Wang Tianyou,Zhang Yajun,Peng Zhijun,et al. Areview of researches on thermal exhaust heat recoverywith Rankine cycle [J]. Renewable and Sustainable En-ergy Reviews, 2011,15(6): 2862-2871.
  • 10魏名山,方金莉,王瑞君,马朝臣.柴油机工况对中温有机朗肯循环性能影响的模拟[J].内燃机学报,2011,29(3):248-252. 被引量:19

二级参考文献19

  • 1Rody E1 Chammas, Denis Clodic. Combined Cycle for Hybrid Vehicles[ C]. SAE Paper 2005-01-1171, 2005.
  • 2Diego A Arias, Timothy A Shedd, Ryan K Jester. Theoretical Analysis of Waste Heat Recovery from an Internal Combustion Engine in a Hybrid Vehicle [ C ]. SAE Paper 2006- 01-1605, 2006.
  • 3Lersing C J, Purohit G P. Waste Heat Recovery in Truck Engines[ C]. SAE Paper 78-686, 1978.
  • 4Nelson C R. High Engine Efficiency at 2010 Emissions [ R]. Presentation at DEER Conference, Chicago, Illinois, August 23, 2005.
  • 5Ho Teng, Gerhard Regner, Chris Cowland. Achieving High Engine Efficiency for Heavy-Duty Diesel Engines by Waste Heat Recovery Using Supercritical Organic-Fluid Rankine Cycle[ C ]. SAE Paper 2006-01-3522, 2006.
  • 6Gerhard Regner, Ho Teng, Chris Cowland. A Quantum Leap for Heavy-Duty Truck Engine Efficiency-Hybrid Power System of Diesel and WHR-ORC Engines[ R]. The 12^th Diesel Engine-Efficiency and Emissions Research Conference, Detroit, Michigan,2006.
  • 7Mike Hanlon. BMW Unveils the Turbosteamer Concept[ EB/ OL]. http://www, gizmag, com/go/4936/, 2005-11-13.
  • 8魏名山,方金莉,马朝臣.超临界有机朗肯双循环废热回收系统[P].中国专利:200810179323.6,2009.4.
  • 9Gerhard Regner,Ho Teng,Chris Cowland. A quantum leap for heavy-duty truck engine efficiency--hybrid power system of diesel and WHR-ORC engines [R]. The 12th Diesel Engine-Efficiency and Emissions Research Conference,Detroit,Michigan, August,2006.
  • 10Mike Hanlon. BMW unveils the turbosteamer concept[EB/OL], http..//www, gizmag, com/go/4936/,2005- 11-13.

共引文献47

同被引文献77

  • 1张扬军,张树勇,徐建中.内燃机流动热力学与涡轮增压技术研究[J].内燃机学报,2008,26(S1):90-95. 被引量:31
  • 2ZHANG YangJun1,CHEN Tao1,ZHUGE WeiLin1,ZHANG ShuYong2 & XU JianZhong3 1 State Key Laboratory of Automotive Safety and Energy,Tsinghua University,Beijing 100084,China,2 National Key Laboratory of Diesel Engine Turbocharging Technology,P.O.B.22,Datong 037036,China,3 Institute of Engineering Thermophysics,Chinese Academy of Sciences,Beijing 100190,China.An integrated turbocharger design approach to improve engine performance[J].Science China(Technological Sciences),2010,53(1):69-74. 被引量:8
  • 3段立强,杨勇平,林汝谋,徐鸿.联合循环中蒸汽底循环系统设计优化研究[J].华北电力大学学报(自然科学版),2004,31(6):37-39. 被引量:7
  • 4李亚卓,诸葛伟林,张扬军,张继忠.发动机增压匹配的涡轮通流模型研究[J].车用发动机,2007(4):71-77. 被引量:5
  • 5EEA. EMEP/EEA air pollutant emission inventory guidebook 2013[R]. European Environment Agency: [s. n. ], 2013 : 1725-2237.
  • 6Schulte H, Wirth M. Internal combustion engines for the future[C]//Proceedings of the International Con- ference on Automotive Technology (ICAT 2004). Is- tanbul: [s. n. ] ,2004.
  • 7Wang T, Zhang Y, Peng Z, et al. A review of researches on thermal exhaust heat recovery with Rankine cycle [J ]. Renewable and Sustainable Energy Reviews, 2011,15: 2862-2871.
  • 8Liu M,Zhang N. Proposal and analysis of a novel am- monia-water cycle for power and refrigeration cogener- ation [J]. Energy, 2007,32 : 961-970.
  • 9Pouraghaie M, Atashkari K, Besarati S, et al. Thermo- dynamic performance optimization of a combined pow- ericooling cycle [J]. Energy Conversion and Manage- ment,2010,51:204-211.
  • 10Martin C,Goswami D. Effectiveness of cooling produc- tion with a combined power and cooling thermodynam- ic cycle [J]. Applied Thermal Engineering, 2006,26: 576-582.

引证文献4

二级引证文献19

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部