期刊文献+

基于统计量ODV的自适应TM-CFAR检测 被引量:3

Adaptive TM-CFAR Detection Based on the Statistics ODV
原文传递
导出
摘要 基于有序数据变率(ODV)和削减平均恒虚警(TM-CFAR)检测,提出了自适应TM-CFAR检测,它能判决自动选择参数并估计背景噪声,仿真结果表明,在均匀背景和多目标背景下,其具有较好的检测性能,能提高抗干扰目标最大容限;在强杂波边缘时,其虚警概率控制能力优于有序统计CFAR检测和单元平均CFAR检测.采用两级结构和分块并行处理思想实现时,该算法所需硬件资源和运算复杂度都低于自动删除平均ODV检测,而且具有实时处理性高和时序控制方便的优点. Adaptive trimmed mean constant false alarm rate (ATM-CFAR) detection based on TM-CFAR detection and statistics ordered data variability (ODV) is presented. These parameters and background estimations can be selected automatically. Simulation shows that the algorithm has good detection per- formance under homogeneous environment and multi-target environment, and also increases its tolerance of interfering targets. Moreover, under high clutter noise ratio at clutter edge regions, the control ability on false alarm rate is much better than that of cell average CFAR detection and ordered statistics CFAR detection. Using two-level architecture and sub-block parallel processing methods, its hardware imple- mentation and computational complexity are less than the automatic censored cell-averaging based on the statistics ODV by on-chip implementation. Furthermore, it also has the advantages of high real-time pro- cessing and is very convenient for sequential control in practice.
出处 《北京邮电大学学报》 EI CAS CSCD 北大核心 2013年第2期64-69,共6页 Journal of Beijing University of Posts and Telecommunications
基金 国家"十一五"科技支撑计划子课题(2008BAC3B00) 国家自然科学基金项目(10978107 60772135)
关键词 有序数据变率 削减平均恒虚警检测 自适应检测 均匀背景 ordered data variability trimmed mean constant false alarm rate detection adaptive detec-tion homogenous environment
  • 引文网络
  • 相关文献

参考文献9

  • 1白剑,杨亚飞,徐迎晖,杨榆,杨义先.基于恒虚警的信号检测迭代算法[J].北京邮电大学学报,2005,28(2):87-90. 被引量:4
  • 2何友,关键,孟祥伟,等.雷达目标检测与恒虚警处理[M].2版.北京:清华大学出版社,2011.
  • 3Cao T-T V. Constant false-alarm rate algorithm based on test cell information [ J]. IET Radar Sonar and Navigation, 2008, 2(3): 200-213.
  • 4Erfanian S, Vakili V T. Introducing excision switching-CFAR in K distributed sea clutter[ J]. Signal Processing, 2009(89) : 1023-1031.
  • 5Leila Tabet, Faouzi Sohani. A generalized switching CFAR processor based on test cell statistics [ J]. SIViP, 2009 ( 3 ) : 265-273.
  • 6Farrouki A, Barket M. Automatic censoring CFAR detector based on ordered data variability for non-homogeneous environments[J]. IEE Proceedings Radar, Sonar & Navigation, 2005, 152(1) : 43-51.
  • 7胡文琳,王永良,王首勇.一种基于有序统计的鲁棒CFAR检测器[J].电子学报,2007,35(3):530-533. 被引量:17
  • 8Atef Farrouki, Mourad Barkat. Automatic censored mean level detector using a variability-based censoring with non-coherent integration [ J ]. Signal Processing, 2007 (87) : 1462-1473.
  • 9Amir Zaimbashi, Yaser Norouzi. Automatic dual censo- ring cell-averaging CFAR detector in non-homogenous environments [ J]. Signal Processing, 2008 ( 88 ) : 2611- 2621.

二级参考文献8

  • 1侯俊才,董绍平.自适应门限恒虚警检测的研究[J].系统工程与电子技术,1994,16(7):6-12. 被引量:5
  • 2何友,关键.基于最大和最小选择的两种新的恒虚警检测器[J].系统工程与电子技术,1995,17(7):6-16. 被引量:10
  • 3Mohammad Ali Khalighi,Mohammad Hasan Bastani.Adaptive CFAR processor for nonhomogeneous environments[J].IEEE Trans on AES,2000,36(3):889-897.
  • 4Rohling H.Radar CFAR thresholding in clutter and multiple target situation[J].IEEE Trans on AES,1983,19(4):608-621.
  • 5M E Smith,P K Varshney.VI-CFAR.A novel CFAR algorithm based on data variability[A].IEEE International Radar conference [C].Edinburgh,UK:IEEE,1997.263-268.
  • 6M E Smith,P K Varshney.Intelligent CFAR processor based on data variability[J].IEEE Trans on AES,2000,36(3):837-847.
  • 7P P Gandhi,S A Kassam.Analysis of CFAR processors in nonhomogeneous background[J].IEEE Trans on AES,1988,36(3):427-445.
  • 8林家儒,吴伟陵,冯志勇.Turbo码译码算法在频率选择性信道中的修正[J].北京邮电大学学报,2001,24(1):6-11. 被引量:6

共引文献19

同被引文献16

引证文献3

二级引证文献3

;
使用帮助 返回顶部