期刊文献+

选择性注意计算模型与算法发展综述

A Survey on Selective Attention Computing Models and Algorithms
下载PDF
导出
摘要 人类在利用视觉进行环境感知时,能够从纷繁复杂的场景中快速、准确地提取有用信息,这是因为人类自然视觉具有选择性注意这一重要特征。为了模拟并实现自然视觉的这一特征,在计算机视觉领域,学者们研究并提出了诸多选择性注意的计算模型。在此对已有的选择性注意计算模型与算法进行了综述,介绍了国内外研究现状,提出了现有研究存在的不足。建议进一步研究自下而上基于图像特征的信息以及自上而下基于任务、知识的信息对视觉注意力的驱动机制,研究选择性注意非均匀采样的表现形式及其在计算机视觉中的实现问题。 When dealing with complex scenes, biological vision can recognize the useful information fast and accurately. This is because that biological vision has the characteristic of selective attention. In the research domain of computer vision, much selective attention computing models have been proposed. This paper presented a survey on the selective attention computing models and algorithms. The research status was introduced. The deficiency of the current research was provided, toether with the future research directions.
出处 《军事交通学院学报》 2013年第5期40-44,共5页 Journal of Military Transportation University
基金 国家自然科学基金项目(61075089,91120306)
关键词 选择性注意 显著性图 计算机视觉 selective attention the saliency map computer vision
  • 相关文献

参考文献46

  • 1Itti L, Koch C. Computational modeling of visual attention[ J]. Nat. Rev, Neuroscience, 2001, 2(3) : 194 -203.
  • 2Corbetta M M, Shulman G L. Control of goal-directed and stimu- lus-driven attention in the brain [ J]. Nat. Rev. Neuroscience, 2002, 3(3) : 201 -215.
  • 3Itti L, Koch C, Niebur E. A model of saliency-based visual at- tention for rapid scene analysis[ J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1998, 20 ( 11 ) : 1254 - 1259.
  • 4Seo H J, Milanfar P. Static and space-time visual saliency detec- tion by self-resemblance [ J ]. Journal of Vision, 2009,9 ( 12 ) : 1 - 27.
  • 5Mancas M, Gosselin B, Macq B. A three-level computational at- tention model[ C ]//Proceedings of ICVS Workshop on Computa- tional Attention & Applications ( WCAA - 2007 ) , Bielefeld, Germany, 2007.
  • 6Itti L, Baldi P. A principled approach to detecting surprising e- vents in video [ C ]//Proceedings of Computer Vision and Pattern Recognition, 2005.
  • 7Bruce N D B, Tsotsos J K. Saliency based on information maxi- mization [ C ]//Proceedings of Neural Information Processing Sys- tems, 2005.
  • 8Kootstra G, Ncderveen A, Boer B. Paying attention to symmetry [ C ]// Proceedings of the British Machine Vision Conference, 2008.
  • 9Zhang L, Tong M H, Marks T K, et al. Sun: a Bayesian frame- work for saliency using natural statistics [ J]. Journal of Vision, 2008, 8(32) : 1 -20.
  • 10Hou X, Zhang L. Saliency detection: a spectral residual ap- proach [ C ]//Proceedings of Computer Vision and Pattern Rec- ognition, 2007.

二级参考文献83

  • 1杨金锋,傅周宇,谭铁牛,胡卫明.一种新型的基于内容的图像识别与过滤方法[J].通信学报,2004,25(7):93-106. 被引量:27
  • 2张鹏,王润生.基于视点转移和视区追踪的图像显著区域检测[J].软件学报,2004,15(6):891-898. 被引量:53
  • 3王璐,蔡自兴.未知环境中基于视觉显著性的自然路标检测[J].模式识别与人工智能,2006,19(1):100-105. 被引量:8
  • 4Liu Li-jie, Fan Guo-liang. Combined key-frame extraction and object-based video segmentation[ J]. IEEE Transactions on Circuits and Systems for Video Technology, 2005 ,IS(7) :869-884.
  • 5Itti L, Koch C. Feature combination strategies for saliency-based visual attention systems [ J ]. Journal of Electronic Imaging, 2001, 10(1) :161-169.
  • 6Ansgar R. Koene,Li Zhao-ping. Feature-specific interactions in salience from combined feature contrasts: Evidence for a bottom-up saliency map in V1 [J]. Journal of Vision,2007,7(7) : 1-14.
  • 7Ma YF, Hua X S. A generic framework of user attention model and its application in video summarization [J]. IEEE Transactions on Multimedia,2005,10(7 ) :907-919.
  • 8Yun Zhai, Mubarak Shah. Visual attention detection in video sequences using spatiotemporal cues[ A]. In:Proceedings of 14th Annual ACM International Conference on Multimedia [ C ], Santa Barbara, CA, USA, 2006 : 815 - 824.
  • 9Itti L, Koch C. Computational modelling of visual attention[J]. Nature Reviews Neuroscience, 2001, 2(3): 194-230.
  • 10Itti L, Koch C. Feature combination strategies for saliencybased visual attention systems[J]. Journal of Electronic Imaging, 2001, 10(1): 161-169.

共引文献52

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部