期刊文献+

溶解氧浓度的前馈神经网络建模控制方法 被引量:21

Feedforward neural network modeling and control for dissolved oxygen concentration
下载PDF
导出
摘要 针对污水处理过程溶解氧(DO)浓度控制问题,提出了一种基于前馈神经网络的建模控制方法(FNNMC).本文构造了神经网络建模控制系统,通过对建模神经网络和控制神经网络隐含层学习率的分析,证明了学习算法的收敛性以及整个系统的稳定性.最后,本文基于国际基准的Benchmark Simulation Model No.1(BSM1)进行了仿真实验,验证了合理选取学习率的重要性,并通过与PID和模型预测控制(MPC)等已有控制方法的比较,验证了神经网络建模控制方法针对污水处理过程溶解氧浓度控制具有良好的建模能力,更高的控制精度以及更好的动态响应能力. A feedforward neural network modeling and control (FNNMC) method is proposed, and its application sys- tem is designed for controlling the dissolved oxygen (DO) concentration in wastewater treatment process. The convergence of the learning algorithm and the stability of the feedforward neural network modeling and control system are proved based on the analysis of the learning rates of hidden layers in both controller neural network and modeling neural network. In applying this method to the Benchmark Simulation Model No.1 (BSM1), the simulation results reveal the importance of properly selecting the learning rates. Comparing with other control methods such as PID control method and model predic- tive control (MPC) method, we find that this method provides for the control process of DO concentration with desirable modeling ability and high control precision in steady-state as well as transient state.
出处 《控制理论与应用》 EI CAS CSCD 北大核心 2013年第5期585-591,共7页 Control Theory & Applications
基金 国家自然科学基金重点资助项目(61034008) 北京市"创新人才建设计划"资助项目(PHR201006103)
关键词 溶解氧 前馈神经网络 建模控制 稳定性 学习率 dissolved oxygen feedforward neural networks modeling and control stability learning rate
  • 相关文献

参考文献20

  • 1The cost simulation benchmark-description and simulator manual [R]. Luxembourg: Office for Publications of the European Commu- nity, 2001.
  • 2GARRIDO J M, VAN BENTHUM W A J, VAN LOOSDRECHT M C M. Influence of dissolved oxygen concentration on nitrite accumu- lation in a biofilm airlift suspension reactor [J]. Biotechnology and Bioengineering, 1997, 53(2): 168 - 178.
  • 3AYESA E, SOTA A D, GRAU P, et al. Supervisory control strate- gies for the new WWTP of Galindo-Bilbao: the long run from the conceptual design to the full-scale experimental validation [J]. Water Science and Technology, 2006, 53(4/5): 193 - 201.
  • 4CARLSSON B, REHNSTROM A. Control of an activated sludge process with nitrogen removal-a benchmark study [J]. Water Science and Technology, 2002, 45(4/5): 135 - 142.
  • 5HOLENDA B, DOMOKOS E. Dissolved oxygen control of the ac- tivated sludge wastewater treatment process using model predictive control [J]. Computers and Chemical Engineering, 2008, 32(6): 1270 - 1278.
  • 6LIU H, YOO C. Performance assessment of cascade controllers for nitrate control in a wastewater treatment process [J]. Korean Journal of Chemical Engineering, 2012, 28(3): 667 - 673.
  • 7WU W, WAN J, CHENG M, et al. Convergence analysis of online gradient method for BP neural networks [J]. Neural Networks, 2010, 24(1): 91 - 98.
  • 8ZHANG R, XU Z, HUANG G, et al. Global convergence of online BP training with dynamic learning rate [J]. 1EEE Transactions on Neural Networks and Learning Systems, 2012, 32(2): 330 - 341.
  • 9WANG J, WANG J, WU W. Convergence of cyclic and almost-cyclic learning with momentnum for feedforward neural networks [J]. IEEE Transactions on NeuralNetworks, 2011, 22(8): 1297 - 1306.
  • 10NARENDRA K S, PARTHASARATHY K. Identification and control of dynamical systems using neural networks [J]. IEEE Transactions on Neural Networks, 1990, 1(1): 4 - 27.

二级参考文献28

共引文献67

同被引文献177

引证文献21

二级引证文献128

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部