摘要
为了提升发动机性能短期预测精度,利用求和自回归移动平均(ARIMA)模型建立某型发动机排气温度预测模型。仿真显示,该预测模型结果优于传统神经网络预测模型。
In order to improve prediction accuracy of short-term engine performance, Autoregressive Integrated Moving Average (ARIMA) model is used to establish exhaust gas temperature prediction model of a certain type of engine. Simulation shows that the results of the prediction model are superior to traditional neural network prediction model.
出处
《自动化应用》
2013年第5期45-46,53,共3页
Automation Application