摘要
采用T形微反应器通过共沉淀法制备了Mg-Al层状双金属氢氧化物(LDHs)纳米颗粒,考察了流速、混合盐溶液浓度和温度等对产物粒径及其分布的影响.实验结果表明,所制备的LDHs样品的形貌和晶体结构与传统共沉淀法结果一致,但本方法制备的样品粒径小、分布窄.随着流速增大,温度升高,所合成的LDHs样品平均粒径减小,分布变窄;而随着混合盐溶液浓度的增大,所得LDHs样品粒径增大,分布变宽.
A T-type microchannel reactor was used to prepare Mg-Al layered double hydroxides(LDHs) via the coprecipitation method. The effects of flow rate of reactant solutions, concentration of mixed salt solution and temperature on the particle size and the particle size distribution of the LDH samples were examined. The results show that the morphology and crystal structure of the LDH samples obtained using the T-type microchannel reactor are similar to those of the materials synthesized by the conventional coprecipitation method. However, the T-type microchannel reactor route could afford smaller particle size and very narrow distribution of particle size for the materials. The flow rate, concentration of mixed salt solution and temperature have an important influence on the particle size and the particle size distribution of the obtained LDH samples. With the increases of the flow rate and temperature, the particle size and the particle size distribution of the obtained LDH samples decreased, while with the increase of the concentration of mixed salt solution, those increased. A major advantage of the T-type microchannel reactor route is that the particle size and the particle size distribution of the as-obtained samples can be simply and effectively controlled by the flow rates of the reactant solutions.
出处
《高等学校化学学报》
SCIE
EI
CAS
CSCD
北大核心
2013年第7期1691-1696,共6页
Chemical Journal of Chinese Universities
基金
国家自然科学基金(批准号:21173135)
高等学校博士学科点专项科研基金(批准号:20110131130008)
山东省泰山学者基金(批准号:ts20070713)资助
关键词
微反应器
共沉淀法
层状双金属氢氧化物
粒径分布
Microchannel reactor
Coprecipitation method
Layered double hydroxide (LDH)
Particle sizedistribution