期刊文献+

数据挖掘流程改进研究 被引量:1

Study on Process Improvement of Data Mining
下载PDF
导出
摘要 数据挖掘作为银行客户关系管理研究的核心方法,其实施流程的有效性对客户分析、甚至对整个银行业务的发展都具有关键性的作用.基于传统数据挖掘流程的优势与特点,建立改进的数据挖掘流程模型,并将改进的模型应用于银行客户流失的分析,为银行客户关系管理提供了新的借鉴. Data mining is a core method in the study of bank customer relationship management,and the efficiency of its implementation procedure plays a significant role in bank customer analysis and even the whole development of bank business.Based on the advantages and features of traditional data mining procedure,this paper constructs a modified model and applies it to the analyzing of bank customer loss,which provides the new idea for bank customer relationship management.
作者 秦秀洁
出处 《河南科学》 2013年第6期868-872,共5页 Henan Science
关键词 客户关系管理 数据挖掘流程 客户流失 customer relationship management(CRM) data mining procedure customer loss
  • 相关文献

参考文献6

  • 1王实,张胜,马红兵,等.银行业CRM理论与实务[MJ.北京:电子工业出版社,2005.
  • 2[美]罗纳德·S·史威福特.客户关系管理-加速利润和优势提升[M].杨东龙,译.北京:中国经济出版社,2002.
  • 3BersonA,SmithS,ThearlingK.构建面向CRM的数据挖掘应用(美)[M].贺奇,郑岩,译.北京:人民邮电出版社,2001.
  • 4张喆,常桂然,黄小原.数据挖掘技术在CRM中的应用[J].中国管理科学,2003,11(1):53-59. 被引量:37
  • 5张喆,常桂然,黄小原.数据挖掘技术在客户获取策略中的应用[J].东北大学学报(自然科学版),2003,24(11):1112-1115. 被引量:3
  • 6Qi Jiayin, Zhang Li, Liu Yanping, et al. ADTreesLogit model for customer churn prediction [J]. Annals of Operations Research, 2009, 168 (1) : 247-265.

二级参考文献13

  • 1Berson A, Smith S, Thearling K. Building data mining applications Jor C'RM [ M ]. New York: McGraw-Hill, 1999. 139 144.
  • 2Bose I, Mahapatra R K. Business data mining—a machine learning perspective [ J ]. Information & Management, 2001,39(3) :211 - 225.
  • 3Shaw M J, Subramaniam C, Tan G W, et al. Knowledge management and data mining for marketing [ J ]. Decision Support Systems, 2001,31 ( 1 ) : 127 - 137.
  • 4Han J W, Kamber M. Data mining: concepts and techniques[M]. San Francisco: Morgan Kaufmann, 2000.279 - 333.
  • 5Breiman L. Bagging predictors [J ]. Machine Learning, 1996,24(2) : 123 - 140.
  • 6Freund Y, Schapire R E. A decision-theoretic generalization of on-line leaming and an application to boosting[J], Journal of Computer and System Sciences, 1997,55 ( 1 ) : 119 - 139.
  • 7Kim E, Kim W, Lee Y. Combination of multiple classifiers for the customer's purchase behavior prediction[J]. Decision Support Systems, 2003,34(2) :167 - 175
  • 8Murthy S K. Automatic construction of decision trees from data: a multi-disciplinary survey [j ]. Data Mining and Knowledge Discovery, 1998,2 (4) : 345 - 389.
  • 9Buntinc W, Niblett T. A further comparison of splitting rules for decision-tree induction [ J 1. Machine Learning, 1992, 8(1):75-85.
  • 10Kononenko I. Se J H, Attribute ,selection for modeling[J]. Future Generation Computer Systems, 1997,13(2 - 3) ; 181- 195.

共引文献38

同被引文献9

  • 1Chung G S,Kim J M. Anodic bonding characteristics of MLCA/Si-wafer using a sputtered Pyrex #7740 glass layer forMEMS applications[J]. Sensors and Actuators, 2004,A116:352-356.
  • 2Lee B,Seok S,Chun K J. A study on wafer level vacuum packaging for MEMS devices[J]. Journal of Micromechanics andMicroengineering, 2003,13(5):663-669.
  • 3Tong Q Y,Lee T H,G-sele U,et al. Role of surface chemistry in bonding of standard silicon wafers[J]. Journal of theElectrochemical Society, 1997,144 (1):384-389.
  • 4Tong Q Y,Gosele U. A model of Low-temperature wafer bonding and its applications[J]. Journal of the ElectrochemicalSociety, 1996,143(5):1773-1779.
  • 5Gosálvez M A,Tang B,Pal P,et al. Orientation- and concentration-dependent surfactant adsorption on silicon in aqueousalkaline solution: explaining the changes in the etch rate, roughness and undercutting for MEMS applications[J]. Journalof Micromechanics and Microengineering, 2009,19:125011.
  • 6王志宏,顾新建.基于数据仓库的产品族供应链管理系统[J].浙江大学学报(工学版),2009,43(7):1197-1202. 被引量:3
  • 7徐顺飞,吴晓红,何小海,高超.岩心库综合管理系统的多数据库兼容设计[J].信息与电子工程,2012,10(6):730-734. 被引量:3
  • 8崔博华,王成,郑英彬.太赫兹MEMS滤波器性能影响因素[J].太赫兹科学与电子信息学报,2013,11(2):319-322. 被引量:7
  • 9张春阳,周继恩,刘贵全,蔡庆生.基于数据仓库的决策支持系统的构建[J].计算机工程,2002,28(4):249-251. 被引量:38

引证文献1

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部