期刊文献+

清扫机器人路径规划的研究 被引量:13

Path Planning of Cleaning Robot
下载PDF
导出
摘要 定位和全覆盖是清扫机器人路径规划的最基本问题。研究了机器人在环境中的相对定位,并采用卡尔曼滤波进行滤波处理,减小误差。研究了基于生物激励神经网络的路径规划算法,通过仿真,发现在障碍物多的情况下重复率较高的问题。对算法进行了改进,提出了一种基于模板的生物激励神经网络的路径规划算法。通过仿真实验,发现算法在减少重复率方面是有效可行的。 Location and complete coverage are the most Jhndamental problems in path planning of cleaning robots.The relative location of the robot in the environment is studied,and kalman filter is usedto filter processing to reduce errors.Path planning algorithm based on biologically inspires neural network ,and simula- tion shows the problem of high repetition rate when there are many obstaclesA Igarithm has been improved,bio- logically inspired neural network path planning algorithm based on the template is proposed here.Through sim- ulation experiment,it is found that the algorithm is feasible and effective to reduce the repetition rate.
出处 《机械设计与制造》 北大核心 2012年第12期160-162,共3页 Machinery Design & Manufacture
基金 机器人技术与系统国家重点实验室自主课题高端智能服务机器人技术研究平台(SKLR201201B)
关键词 全覆盖 生物激励神经网络 路径规划 清扫机器人 Complete Coverage Biologically Inspired Neural Network Path Planning Cleaning Robot
  • 引文网络
  • 相关文献

参考文献6

  • 1刘国栋,谢宏斌,李春光.动态环境中基于遗传算法的移动机器人路径规划的方法[J].机器人,2003,25(4):327-330. 被引量:49
  • 2R.Araujo,Prune-able fuzzy ART neural architecture for robot map learning and navigation in dynamic environments[J].IEEE Trans.Neural Netw.,2006:1235-1249.
  • 3李群明,熊蓉,褚健.室内自主移动机器人定位方法研究综述[J].机器人,2003,25(6):560-567. 被引量:68
  • 4Grossberg S.Nonlinear neural networks:principles,mechanism,and architectures[J].IEEE Transactions on Neural Networks,1988,1(1):17-61.
  • 5Yang S X,Luo C.A Neural Network Approach to Complete Coverage Path Planning[J].System,Man,And Cybernetic,2004:718-725.
  • 6Luo C,Yang S X.A Bioinspired Neural Network for Real-Time Concurrent Map Building and Complete C overage Robot Navigation in Unknown Environments[J].Transactions on Neural Networks,2008:1279-1298.

二级参考文献43

  • 1孙增圻等.智能控制理论与技术[M].北京:清华大学出版社,..
  • 2Borenstein J, Koren Y. The vector field histogram - fast obstacle avoidance for mobile robots[ J]. IEEE Journal of Robotics and Automation ,1991,7(3) : 278 -288.
  • 3Kehtaraavaz N, Grisworld, Lee J. Visual control for an autonomous vehicle(BART) -the vehicle following problem[J]. IEEE Transcation on Vehicular Technology. 1991,40(3) :654 -662.
  • 4Fujimori A, Nikiforuk P N, Gupta M M. Adaptive navigation of mobile robots with obstacle avoidance[ J]. IEEE Transcations On Robotics and Automation. 1997,13(4) :596 -601.
  • 5Fierro R, Lewis F L. Control of a nonholonomic mobile robot using neural networks[ J ]. IEEE Trascation on Neural Networks. 1998,9 (4) :589 -600.
  • 6Sarkar N, Yun X P, Kumar V. Control of mechanical systems with rolling constrains: application to dynamic control of mobile robots[ J]. Int J of Robotics Research, 1994,3( 1 ) :55 - 69.
  • 7Neim J, Tardos J D, et al. Fusing range and intensity images for mobile robot localization[ J]. IEEE Transaction on Robotics and Automation. 1999,15(1) : 76 -84.
  • 8Shiele B, Cmwley J. A comparison of position estimation techniques using occupancy grids [ J]. Robotics and autonomous systems. 12 (1994) : 163 -171.
  • 9Simmon R, Koenig S. Probabilistic navigation in partially observable environments[ A]. Proceedings of the International Joint Conference on Artificial Intelligence (IJCAI95) [ C ]. 1995. 1080 -1087.
  • 10Smith R, Self M, Checseman P. A stochastic map for uncertain spatial relationships [ A ]: The Fourth International Symposium on Robotics Research[ C]. 1988. 467 -474.

共引文献115

同被引文献73

引证文献13

二级引证文献94

;
使用帮助 返回顶部