期刊文献+

双闭环策略下非完整轮式机器人鲁棒自适应运动/力协调控制(英文) 被引量:2

Adaptive robust motion/force coordinated control of nonholonomic wheeled mobile robot via a double closed-loop strategy
下载PDF
导出
摘要 非完整轮式移动机器人的路径跟踪,需要在保证机器人姿态跟踪精度的同时,增强其地面适应性能.为实现这种运动/力的协调控制目标,本文提出双闭环的控制系统结构:外环能够增加运动精度,内环则可以增强机器人对地面动态摩阻的适应性.同时,考虑到地面摩阻的慢时变性,本文通过构造观测器对其进行估计.在具体算法实现方面,采用反步法在外环构建运动控制器:而在内环,则是应用积分型的滑模技术设计力控制器与观测器.最后,对控制系统进行仿真,仿真结果证明所提出控制方法的有效性. Path following of a nonholonomic wheeled mobile robot should harmoniously guarantee the accurate robot posture tracking and the enhancing terrain-adaptive performance.To realize this coordinated motion/force objective,we propose a double closed-loop control structure with the outer loop to improve the motion accuracy and the inner loop to enhance the dynamic terrain friction adaptability.Meanwhile,the uncertain terrain friction is estimated by an observer considering its slow time-varying characteristic.In order to realize the control algorithms,we developed the motion controller for the outer loop via backstepping method;and apply the integral sliding mode technique to design the observer and the force controller for the inner loop.Simulations are performed and the results demonstrate the effectiveness of the proposed control schemes.
出处 《控制理论与应用》 EI CAS CSCD 北大核心 2013年第7期801-807,共7页 Control Theory & Applications
基金 supported by the National Natural Science Foundation of China(Nos.61175101,61175102) the State Key Laboratory of Mechanical Transmission(No.SKLMT-KFKT-201006) the Fundamental Research Funds for the Central Universities(No.DUT12LK45)
关键词 轮式机器人 运动 协调控制 双闭环 wheeled mobile robot motion/force coordinated control double closed-loop
  • 引文网络
  • 相关文献

参考文献21

  • 1SAMSON C. Control of chained systems application to pathfollowing and time-varying point-stabilization of mobile robots [J]. IEEE Transactions on Automatic Control, 1995,40(1): 64 - 77.
  • 2YUE M, HU P, SUN W. Path following of a class of non-holonomic mobile robot with underactuated vehicle body [J]. IET Control Theory and Applications, 2010, 4(10): 1898 - 1904.
  • 3LI Z, ZHANG Y. Robust adaptive motion/force control for wheeled inverted pendulums [J]. Automatica, 2010, 46(8): 1346 - 1353.
  • 4DIXON W, JIANG Z, DAWSON D. Global exponential setpoint control of wheeled mobile robots: a Lyapunov approach [J]. Automatica, 2000,36(11): 1741- 1746.
  • 5SANKARANARAYANAN V, MAHINDRAKAR A. Control of a class of underactuated mechanical systems using sliding modes [J]. IEEE Transaction on Robotics, 2009, 25(2): 459 - 467.
  • 6ORIOLO G, LUCA A, VENDITTELLI M. WMR control via dynamic feedback linearization: Design, implementation, and experimental validation [J]. IEEE Transactions on Control Systems Technology, 2002, 10(6): 835 - 852.
  • 7JIANG Z, LEFEBER E, NIJMEIJER H. Saturated stabilization and tracking of a nonholonomic mobile robot [J]. Systems and Control Letters, 2001, 42(5): 327 - 332.
  • 8PARK B, YOO S, PARK J, et al. A simple adaptive control approach for trajectory tracking of electrically driven nonholonomic mobile robots [J]. IEEE Transactions on Control Systems Technology, 2010, 18(5): 1199 - 1206.
  • 9HOU Z, ZOU A, CHENG L, et al. Adaptive control of an electrically driven nonholonomic mobile robot via backstepping and fuzzy approach [J]. IEEE Transactions on Control Systems Technology, 2009, 17(4): 803 - 815.
  • 10LI Z, ZHANG J, YANG Y. Motion control of mobile under-actuated manipulators by implicit function using support vector machines [J]. lET Control Theory and Applications, 2010, 4(11): 2356 - 2368.

二级参考文献41

  • 1Singh S N. Rotational maneuvers of nonlinear uncertain spacecraft. IEEE Transactions on Aerospace Electronic and Systems 1988; 24(2): 114-123.
  • 2Nagata T, Modi V J, Matsuo H. Dynamics and control of flexible multi-body systems Part II: simulation code and parametric studies with nonlinear control. Acta Astronautica 2001; 49(11): 595-610.
  • 3Karray F, Grewal A, Glaum M, et al. Stiffening control of a class of nonlinear affine systems. IEEE Transactions on Aerospace Electronic and Systems 1997; 33(2): 473-484.
  • 4Tsiotras P. Further passivity results for the attitude control problem. IEEE Transactions on Automatic Control 1998; 43(11): 1597-1600.
  • 5Hokayem P F, Schilling K. Input-to-state stable attitude control. Journal of Guidance, Control, and Dynamics 2008; 31(6): 1826-1829.
  • 6Hu Q L, Ma G F. Variable structure control and active vibration suppression of flexible spacecraft during attitude maneuver. Aerospace Science and Technology 2005; 9(4): 307-317.
  • 7Iyer A, Singh S N. Variable structure slewing control and vibration damping of flexible spacecraft. Acta Astronautica 1991; 25(1): 1-9.
  • 8Hu Q L. Sliding mode maneuvering control and active vibration damping of three-axis stabilized flexible spacecraft with actuator dynamics. Nonlinear Dynamics 2008; 52(3): 227-248.
  • 9Singh S N, Araujo A D. Adaptive control and stabilization of elastic spacecraft. IEEE Transactions on Aerospace and Electronic Systems 1999; 35(1): 115-122.
  • 10Maganti G B, Singh S N. Simplified adaptive control of an orbiting flexible spacecraft. Acta Astronautica 2007; 61(7-8): 575-589.

共引文献15

同被引文献6

引证文献2

二级引证文献5

相关主题

;
使用帮助 返回顶部