期刊文献+

基于粒子群优化神经网络的卫星故障预测方法 被引量:19

Method of Prognostics for Satellite Based on Particle Swarm Optimized Neural Network
下载PDF
导出
摘要 随着卫星数量和应用领域的日益增多,确保卫星的安全稳定运行,及时发现故障、处理故障,已成为运行管理工作的重点,因此有必要开展故障预测技术的研究;提出了一种粒子群优化的神经网络方法,实现卫星的故障预测;首先,基于卫星的原理和运行特点,通过卫星遥测参数获取特征;其次,利用神经网络对卫星关键遥测参数进行近似和建模,并利用粒子群算法对神经网络进行优化;之后,利用时间序列方法对遥测参数进行预测,并将预测结果与粒子群优化的神经网络的输出进行比较,根据神经网络的输入层与输出层之间的关联信息实现对卫星的预测;最后,利用带有故障信息的电源系统真实遥测数据来对本文提出的方法的可行性进行验证,使用粒子群优化神经网络对遥测参数进行建模,能够很好地检测遥测参数是否正常,预测值与真实值的验证结果证明了在卫星故障预测中应用粒子群优化神经网络的有效性。 As the number of satellite is growing, ensuring safe and stable operation of the satellite, finding and handling the faults on time has become the foucus of the operation and mangement for satellite, it is necessary to study the prognostic technology in order to find the fault in advance. This paper puts forward a method of particle swarm optimized neural network used to realize prognostics for satellite consid- ering the importance of prognostics in the field of PHM study. Firstly based on the principle and operation traits of the satellite, the fault modes and fault characteristics are analyzed to obtain the feature that the prognostics can be achieved through the telemetry parameters of the satellite. Secondly the neural network is invoked to approximate and model the key telemetry parameters of the satellite, and the neural net- work is optimized through particle swarm optimization algorithm. Thirdly times series method is incurred to predict the data of the telemetry parameters. Furthermore the predict data are contrasted to the outputs of the particle swarm optimized neural network, and the prognostics for satellite are achieved with the information. Finally an experiment using telemetry data with fault data in the power system of a satellite is set up to verify the feasibility of the method proposed in this paper, and the experimental results prove the effectiveness of the particle swarm optimized neural network in prognostics for satellite.
出处 《计算机测量与控制》 北大核心 2013年第7期1730-1733,1745,共5页 Computer Measurement &Control
基金 国防基础科研资助项目
关键词 故障预测 卫星 粒子群优化 神经网络 时间序列 prognostics satellite swarm optimization neural network times series method
  • 相关文献

参考文献6

  • 1Mengshoel J, Adnan D, Keith C. Diagnosing faults in electrical power systems of satellite and aircraft [J]. IEEE Transactions on Power Delivery 20, 2006 : 620 - 630.
  • 2Abhinav S, Indranil R, Celaya j. Requirements specifications for prognostics: an overview [J]. American Institute of Aeronautics and Astronautics, 2004: 1- 16.
  • 3Shimony E. Finding maps for belief networks is np-hard [J]. Ar- tifical Intelligence 68, 2007: 399- 410.
  • 4Yongli Z, Limin H, Jinling L. Bayesian network-based approach for power system fault diagnosis[J]. IEEE Transactions on Power Delivery 21, 2005:634 - 639.
  • 5李志杰,邓欣,阳春华,李勇刚.基于改进粒子群优化算法的锌电解过程模型研究[J].计算机测量与控制,2008,16(6):805-807. 被引量:2
  • 6Eberhart R C, Kennedy J. A new optimizer using particle swarm theory [A]. Proceeding of the Sixth International Symposium On Micro Machine and Human Science [C]. Nagoya, Japan, 2006:39 -43.

二级参考文献9

  • 1刘艺华,蒋复岱,申群太,徐从谦.ptp通讯在锌电解供电优化系统中的研究与应用[J].计算机测量与控制,2007,15(7):890-892. 被引量:1
  • 2Yang C H, Deconlnck G, Gui W H, et al. An optimal power-dispatching system using neural networks for the electrochemical process of zinc depending on varying prices of electricity [J]. IEEE Trans. On Neural Networks, 2002, 13 (1): 229-236.
  • 3Barton G W, Scott A C. A validated mathematical model for a zinc electrowinning cell [J]. Journal of Applied Electrochemistry, 1992, (22): 104-115.
  • 4Scott A C, Pitblado R M, Barton G W. Experimental determination of the faetors affeeting zine eleetrowinning effieieney [J]. Journal of Applied Electroehemistry, 1988 (18): 120-127.
  • 5Kennedy J, Eberhart R C. Partieal swarm optimization [A]. Proceedings of the 1995 IEEE International Conference on Neural Network [C]. Perth, Australia, 1995: 1942-1948.
  • 6Eberhart R, Kennedy J. A new optimizer using particle swarm theory [A]. Proc of the Sixth International Symposium on Micro Machineand Human Science [C]. Nagoya, Japan, 1995: 39- 43.
  • 7Angeline P J. Evolutionary optimization versus particle swarm optimization: philosophy and performance differences [J]. Evolutionary Programming, 1998, 48 (17) : 1956-1959.
  • 8Van den Bergh F. An analysis of particle swarm optimizers [D]. Department of Computer Science, University of Pretoria, South Africa, 2002.
  • 9铅锌冶金学[M].北京:北京科学出版社,2003.

共引文献1

同被引文献142

引证文献19

二级引证文献73

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部