期刊文献+

基于改进量子遗传算法的云计算资源调度 被引量:30

Cloud computing resource scheduling based on improved quantum genetic algorithm
下载PDF
导出
摘要 针对云计算环境下资源的高效调度问题,当前研究较少关注云服务提供商的服务成本,为此,以云服务提供商降低最小服务成本为目的,提出了改进量子遗传算法的云资源调度算法。由于采用二进制量子位表示的染色体无法描述资源调度矩阵,该算法将量子位的二进制编码转换为实数编码,并使用旋转策略和变异算子保证算法的收敛性。通过仿真实验平台将此算法与遗传算法和粒子群算法进行比较分析,在种群迭代次数为100的情况下,分别取种群数为1和10,实验结果表明该算法能取得更小的最小服务成本。 Focusing on the problem of high efficiency resource scheduling in cloud computing environment,since current research has been less concerned about the cost of the services of the cloud service provider,an improved Quantum Genetic Algorithm(QGA) was proposed to reduce the minimum service cost of cloud service provider.This algorithm converted quantum-bits encoded by binary number to real-coded quantum-bits as chromosome represented by binary-coded quantum-bits cannot describe the resource scheduling matrix,and used rotation strategy and mutation operator to guarantee the convergence of the algorithm.Comparative experiments were conducted among the improved QGA,Genetic Algorithm(GA) and Particle Swarm Optimization(PSO) through simulation platform,the populations number is 1 and 100 with 100 iteration times.The experimental results show that the improved QGA can obtain smaller minimum service cost.
出处 《计算机应用》 CSCD 北大核心 2013年第8期2151-2153,共3页 journal of Computer Applications
基金 国家自然科学基金资助项目(61203135) 国家科技支撑计划项目(2012BAH19F01)
关键词 云计算 量子遗传算法 资源调度 最小成本 实数编码 cloud computing Quantum Genetic Algorithm(QGA) resource scheduling minimum cost real encoding
  • 相关文献

参考文献15

  • 1MELL P, GRANCE T. The NIST definition of cloud computing [ EB/OL]. [2012 - 12 -08]. http://www, nist. gov/itlfcloud/.
  • 2李建锋,彭舰.云计算环境下基于改进遗传算法的任务调度算法[J].计算机应用,2011,31(1):184-186. 被引量:203
  • 3齐金平,查显锋.多任务多资源优化调度的病毒遗传算法[J].计算机应用,2011,31(7):1773-1775. 被引量:6
  • 4徐骁勇,潘郁,凌晨.云计算环境下资源的节能调度[J].计算机应用,2012,32(7):1913-1915. 被引量:22
  • 5LAYEB A, MESHOUL S, BATOUCHE M. Multiple sequence a- lignment by quantum genetic algorithm [ C]// IPDPS 2006: Pro- ceedings of the 20th International Parallel and Distributed Processing Symposium. Piscataway: IEEE Computer Society, 2006.
  • 6LIB B, WANG L. A hybrid quantum-inspired genetic algorithm for muhiobjective flow shop scheduling [ J]. IEEE Transactions on Sys- tems Man and Cybernetics, Part B: Cybernetics, 2007, 37(3):576 -591.
  • 7孙大为,常桂然,李凤云,王川,王兴伟.一种基于免疫克隆的偏好多维QoS云资源调度优化算法[J].电子学报,2011,39(8):1824-1831. 被引量:53
  • 8ZHENG Z N, WANG R, ZHONG H, et al. An approach for cloud resource scheduling based on parallel genetic algorithm [ C]// ICCRD2011: Proceedings of the 3rd International Conference on Computer Research and Development. Washington, DC: IEEE Computer Society, 2011:444 -447.
  • 9YANG Z, YIN C Q, LIU Y. A cost-based resource scheduling para- digm in cloud computing [ C]// PDCAT 2011: Proceedings of the 12th International Conference on Parallel and Distributed Compu- ting, Applications and Technologies. Washington, DC: IEEE Com- puter Society, 2011:417 -422.
  • 10Google compute engine pricing [ EB/OL]. [ 2012 - 12 - 20]. ht- tp://cloud, google, com/pricing/compute-engine, html.

二级参考文献81

共引文献380

同被引文献252

引证文献30

二级引证文献240

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部