摘要
分析传统 BP算法存在的缺点 ,并针对这些缺点提出一种改进的 BP学习算法 .证明该算法在一定条件下是超线性收敛的 ,并且该算法能够克服传统 BP算法的某些弊端 ,算法的计算复杂度与简单 BP算法是同阶的 .实验结果说明这种改进的 BP算法是高效的、可行的 .
In this paper, some shortages of traditional BP learning algorithm are analyzed. To avoid these shortages, a modified BP learning algorithm is proposed. It is shown that this algorithm is super linearly convergent under certain conditions. This algorithm can overcome some shortages of traditional BP learning algorithm, and has the same order of computation complexity as the traditional BP algorithm. Finally, two computing examples are given. Simulation results illustrate that this algorithm is highly effective and practicable.
出处
《软件学报》
EI
CSCD
北大核心
2000年第8期1094-1096,共3页
Journal of Software
基金
国家自然科学基金! (No.6 970 5 0 0 1)资助
关键词
前馈神经网络
超线性收敛
BP网络
学习算法
Feedforward neural network, BP learning algorithm, convergence, super linear convergence.