期刊文献+

多种群粒子群算法与混合蛙跳算法融合的研究 被引量:20

New Hybrid Algorithm Based on Multiswarm Particle Swarm Optimization and Shuffled Frog Leaping Algorithm
下载PDF
导出
摘要 针对粒子群算法和混合蛙跳算法在复杂函数寻优上易于陷入局部最优值的缺点,提出一种新的粒子群与混合蛙跳融合算法.算法采用多种群粒子群方法,每次进化后,将各子群中的最优粒子组成新的群体,采用混合蛙跳模式进化,以提高种群的多样性.粒子群各子群的进化模式中,除考虑本子群最好的粒子外,还考虑整合群体最好的粒子.相对于其它一些改进的粒子群或混合蛙跳算法,融合算法概念简单,易于实现,具有良好的全局搜索能力和较快的收敛速度.基准测试函数的仿真结果表明,本文算法优于目前一些常见的改进粒子群算法. We propose a new hybrid algorithm, countering the shortcoming of particle Swarm optimization and shuffled frog leaping algorithm being easy to fall into local optimum in high-dimensional complex function optimization. The algorithm uses multiswarm particle swarm optimization, and after each evolution, groups the best particles in the sub-swarms into a frog group and uses shuffled frog leaping algorithm to evolve it. Inthe evolutionary model of each sub-swarm, in addition to considering the best particle of the sub- swarm, the best particle of the whole swarm is also considered. Compared with some improved particle swarm optimization or shuf- fled frog leaping algorithm, the hybrid algorithm is simple in concept, easy to implement, has a good global search capability and fas- ter convergence speed. The MPSO-SFLA has comprehensively been evaluated on 8 unimodal and multimodal benchmark functions. Results show that MPSO-SFLA is better then some of the common improved particle swarm optimization.
出处 《小型微型计算机系统》 CSCD 北大核心 2013年第9期2164-2168,共5页 Journal of Chinese Computer Systems
基金 国家自然科学基金项目(61261039)资助 江西省自然科学基金项目(2010GZS163)资助 江西省教育厅基金项目(GJJ12633)资助
关键词 粒子群算法 混合蛙跳算法 融合算法 多种群粒子群 particle swarm optimization shuffled frog leaping algorithm hybrid algorithm multiswarm particle swarm optimization
  • 相关文献

参考文献2

二级参考文献36

  • 1宋丹,傅明.基于多种群的自适应免疫进化计算[J].控制与决策,2005,20(11):1251-1255. 被引量:4
  • 2de Castro L N, Zuben F J V. Learning and optimization usingthe clonal selection principle[J]. IEEE Trans on Evolutionary Computation, 2002, 6(3): 239-251.
  • 3Dasgupta D. Advances in artificial immune systems[J]. IEEE Computational Intelligence Magazine, 2006, 1(4): 40-49.
  • 4Kumlachew M W, Gary G Y. Vaccine-enhanced artificial immune system for multimodal function optimization[J]. IEEE Trans on Systems, Man and Cybernetics: Part B, 2010, 40(1): 218-228.
  • 5Amanda M Whitbrook, Uwe Aickelin, Jonathan M Garibaldi. Idiotypic immune networks in mobile-robot control[J]. IEEE Trans on Systems, Man and Cybernetics: Part B, 2007, 37(6): 1581-1597.
  • 6Aldo Canova, Fabio Freschi, Michele Tartaglia. Multi- objective optimization of parallel cable layout[J]. IEEE Trans on Magnetic, 2007, 43(10): 3914-3920.
  • 7Potter M A, de Jong K A. A cooperative coevolutionary approach to function optimization[C]. Proc of the 3rd Parallel Problem Solving from Nature. Berlin: Springer- Vedag, 1994: 249-257.
  • 8Eberhart R, Kennedy J A. New optimizer using particle swarm theory[C]. Proc of Int Symposium on Micromachine and Human Science. Nagoya: IEEE Press, 1995: 39-43.
  • 9尚玉吕,蔡晓明.普通生态学[M].北京:北京大学出版社,1996.
  • 10焦李成,杜海峰,刘芳,等.免疫优化计算,学习与识别[M].北京:科学出版社,2007:93-104,133-143.

共引文献59

同被引文献168

  • 1吕林,罗绮,刘俊勇,田立峰.一种基于多种群分层的粒子群优化算法[J].四川大学学报(工程科学版),2008,40(5):171-176. 被引量:13
  • 2王俊年,申群太,沈洪远,周鲜成.基于多种群协同进化微粒群算法的径向基神经网络设计[J].控制理论与应用,2006,23(2):251-255. 被引量:19
  • 3黄建江,须文波,孙俊,董洪伟.量子行为粒子群优化算法的布局问题研究[J].计算机应用,2006,26(12):3015-3018. 被引量:12
  • 4吴子燕,代凤娟,宋静,吴丹.损伤检测中的传感器优化布置方法研究[J].西北工业大学学报,2007,25(4):503-507. 被引量:19
  • 5SUN Hui, LI Jun, WEN Lili, et al. A hybird particle swarm optimization for wireless sensor network coverage problem [J]. Sensor Letters, 2012, 10 (8): 1744-1750.
  • 6WANG Hui, WU Zhijian, S Rahnamayan, et al. Enhandng particle swarm optimization using generalized opposition-based learning [J]. Irdormation Sciences, 2011, 181 (20): 4699-4714.
  • 7Liu S Q, Kozan E. Scheduling a flow shop with combined buffer conditions. International Journal of Production Economics, 2009, 117 ( 2 ) :371-380.
  • 8Hall N G, Sriskandarajah C. Survey of machine schedu- ling problems with blocking and no-wait in process. Oper- ations Research, 1996, 44 ( 3 ) : 510-525.
  • 9Thornton H W, Hunsucker J L. A new heuristic for mini- mal makespan in flow shops with multiple processors and no intermediate storage. European Journal of Operational Research, 2004, 152(1): 96-114.
  • 10Zhu J, Gu X S. A new particle swarm optimization algo- rithm for short-term scheduling of single-stage batch plants with parallel lines. In : Proceeding of the 6th Inter- national Conference on Intelligent Systems Design and Applications, Jinan, China, 2006.2:673-678.

引证文献20

二级引证文献70

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部