泛函差分方程的概周期解的存在和稳定性
Stability Properties and Existence of Almost Periodic Solutions of Functional Difference Equations
摘要
对于具有无界时滞的泛函差分方程,通过有界解的完全稳定性刻划了解的概周期和渐近概周期性的存在.
For functional difference equations with unbounded delay,the existence of almost periodic and asymptotically almost periodic solution was characterized using total stability properties of a bounded solution.
出处
《佳木斯大学学报(自然科学版)》
CAS
2013年第4期635-637,共3页
Journal of Jiamusi University:Natural Science Edition
关键词
泛函差分方程
概周期解
完全稳定性
functional difference equation
almost periodic solution
total stability property
参考文献13
-
1Hamaya Y. On the Existence of almost Periodic Solutions of a Nonlinear Volterra Difference Equation[J]. International Journal of Difference Equations (IJDE), 2007, 2(2) : 187 -196.
-
2Zhang S, Liu P, Gopalsamy K. Almost Periodic Solutions of Nonautonomous Linear Difference Equations[ J]. Applicable A- nalysis, 2002, 81(2): 281 -301.
-
3Agarwal R P, O~gan D and Wong P J Y, Constant-sign Peri- odic and almost Periodic Solutions of a System of Difference E-quations [ J ]. Computers & Mathematics with Applications, 2005, 50(10) : 1725 - 1754.
-
4Ignatyev A O, Ignatyev O A. On the Stability in Periodic and al- most Periodic Difference Systems [ J ]. Journal of Mathematical Ana/ysis and Applications, 2006, 313(2) : 678 -688.
-
5Sung Kyu C, Namjip K. Almost Periodic Solutions of Nonlinear Discrete Volterra Equations with Unbounded Delay [ J ]. Ad- vances in Difference Equations, 2008.
-
6Choi S K, Goo Y H, Im D M, et al. Total Stability in Nonlinear Discrete Volterra Equations with Unbounded Delay[ J]. Abstract and Applied Analysis. Hindawi Publishing Corporation, 2009.
-
7Song Y. Almost Periodic Solutions of Discrete Volterra Equations [ J]. Journal of Mathematical Analysis and Applications, 2006, 314(1) : 174 -194.
-
8Song Y, Tian H. Periodic and almost Periodic Solutions of Non- linear Discrete Volterra Equations with Unbounded Delay [ J ]. Journal of Computational and Applied Mathematics, 2007, 205 (2) ~ 859 -870.
-
9Song Y. Asymptotically almost Periodic Solutions of NonlinearVolterra Difference Equations with Unbounded Delay[ J]. Jour- nal of Difference Equations and Applications, 2008, 14 ( 9 ) : 971 -986.
-
10吴中华.Existence of asymptotically almost periodic solutions and stability properties for functional difference equations[J].Journal of Chongqing University,2012,11(2):97-102. 被引量:4
二级参考文献19
-
1Bondi P, Moauro V, Visentin F. Limiting equations in the stability problem [J]. Nonlinear Analysis, Theory, Methods & Applications [ISSN 0362-546X], 1977, 1(2): 123-128.
-
2Artstein Z. Uniform asymptotic stability via the limiting equations [J]. Journal of Differential Equations [ISSN 0022-0396], 1978, 27(2): 172-189.
-
3D'arma A, Maio A, Monte A. Limiting equations in asymptotic stability problems for nonautonomous differential equations [J]. Annali dell'Universita di Ferrara [ISSN 0430-3202], 1979, 25(1): 75-97.
-
4Visentin F. Limiting equations in the problem of total stability [J]. Ricerche di Matematica [ISSN 0035-5038], 1979, 28(2): 323-331.
-
5D'anna A, Maio A, Moauro V. Global stability properties by means of limiting equations [J]. Nonlinear Analysis, Theory, Methods & Applications [ISSN 0362-546X], 1980, 4(2): 407-410.
-
6D'anna A. Limiting equations in the first approximation stability problem for non-autonomous differential equations [J]. Bollettino Della Unione Matematica Italiana [ISSN 0041-7084], 1982, 6(1): 39- 46.
-
7D'anna A, Monte AM. Limiting equations as a method to prove sets stability [J]. Annali dellZlniversita di Ferrara [ISSN 0430-3202], 1982, 28(1): 67-79.
-
8Hamaya Y. Total stability property in limiting equations of intcgrodiffcrential equations [J]. Funkcialaj Ekvacioj [ISSN 0532-8721], 1990, 33(2): 345-362.
-
9Anderson P, Bemfeld SR. Total stability of scalar differential equations determined from their limiting functions [J]. Journal of Mathematical Analysis and Applications [ISSN 0022-247X], 2001, 257(2): 251- 273.
-
10Visentin F. Limiting processes in the stability problem [J]. Applied Mathematics and Computation [ISSN 0096-3003], 1980, 7(1): 81-91.
-
1吴中华.泛函微分方程的概周期解的存在和稳定性[J].黑龙江科学,2013,4(8):28-29.
-
2郑波.不稳定型非线性脉冲泛函差分方程的稳定性[J].广州大学学报(自然科学版),2005,4(1):17-21.
-
3田淑环.泛函差分方程的非线性边值问题的单调迭代方法[J].保定学院学报,2010,23(3):28-30.
-
4杨甲山,张晓建.具阻尼项的二阶拟线性泛函差分方程的振荡性判别准则[J].浙江大学学报(理学版),2015,42(3):276-281. 被引量:7
-
5杨甲山,黄劲.一类具阻尼项的二阶差分方程的振荡性(英文)[J].昆明理工大学学报(自然科学版),2015,40(4):131-138. 被引量:3
-
6刘宁元.二类泛函差分方程的正周期解[J].广东女子职业技术学院学刊,2010(2):46-48.
-
7徐道义,徐安石.非线性泛函差分系统的吸引域[J].科学通报,1998,43(17):1828-1831. 被引量:3
-
8赵家祥.用极限方程的方法研究完全稳定性质[J].数学年刊(A辑),1991,12(3):309-315.
-
9赵家祥.极限方程与F完全稳定性[J].南京大学学报(自然科学版),1990,26(3):373-383.
-
10高红玲.一类高阶差分方程解的渐近性质[J].哈尔滨师范大学自然科学学报,2003,19(2):23-25.