期刊文献+

压缩感知的能量异构WSN分簇路由协议 被引量:10

Compressed Sensing Clustering Routing Protocol for Energy Heterogeneous WSN
下载PDF
导出
摘要 针对无线传感器网络能量异构普遍存在的特点,提出了一种基于压缩感知的能量异构分簇路由协议(CSCH算法)。该算法根据异构节点能量确定多级簇头选举的概率,将簇内节点的信息集中在簇头上,而簇头对所采集的数据进行稀疏、压缩,以减少向汇聚节点传输数据的节点数和通信量,汇聚节点利用重构算法可从来自簇头的少量数据中恢复出信号源。同时设计了一种基于正态分布的权值系数,以优化在数据量过少情况下压缩感知算法的信号重构性能。仿真实验结果表明,该协议不仅能充分利用能量异构资源,均衡网络能耗,延长整个网络生命周期,而且能精确恢复信号源。 Aiming at the characteristics of universal energy heterogeneous in wireless sensor networks (WSN), we proposed a compressed sensing clustering routing protocol for the energy of heterogeneous wireless sensor networks (CSCH algorithm). The algorithm determines the probability of muhi-lever cluster head election by the energy of nodes, gathering the information of cluster nodes to cluster head, then uses the cluster head to dilute and compress the gathering data to reduce the number of nodes and the amount of communication of the data transmitted to the fusion center. The fusion center can restore signal source from a few data of cluster head using reconstruction algorithm. We also designed a weight coefficient based on normal distribution to optimize information reconstruction performance of compressed sensing algorithm in the case of lacking data. Simulation results show that this protocol can not only take full advantage of heterogeneous energy resources, balance energy dissipation of network and extend the lifetime of the entire network, but also accurately restore the signal source.
作者 蒋文贤
出处 《传感技术学报》 CAS CSCD 北大核心 2013年第6期894-900,共7页 Chinese Journal of Sensors and Actuators
基金 福建省自然科学基金项目(2013J01240)
关键词 无线传感器网络 压缩感知 路由协议 能量异构 能量均衡 wireless sensor networks compressed sensing routing protocol energy heterogeneous energy-balanced
  • 相关文献

参考文献16

二级参考文献150

共引文献583

同被引文献84

  • 1叶晓国.基于NS-2的无线传感器网络仿真模块扩展方法的研究[J].计算机研究与发展,2011,48(S2):302-306. 被引量:5
  • 2余旭涛,毕光国,王霄峻,张在琛.Ad Hoc网络按需路由协议的改进[J].计算机学报,2004,27(6):838-844. 被引量:18
  • 3周正.无线传感器网络的节点自定位技术[J].中兴通讯技术,2005,11(4):51-56. 被引量:36
  • 4景博,张劫,孙勇.智能网络传感器与无线传感器网络[M].北京:国防工业出版社,2011:60-80.
  • 5Zhang Y, Li J. Wavelet-Based Vibration Sensor Data Compression Technique for Civil Infrastructure Condition Monitoring [ J ]. Journal of Computing in Civil Engineering. 2006,20 (6) :390-399.
  • 6Zhang Y, Li J. Efficient Seismic Response Data Storage and Transmission Using ARX Model-Based Sensor Data Compression Algorithm[J]. Earthquake Engineering and Structural Dynamics. 2006,35 (6) :781-788.
  • 7Chintalapudi K K. Design of Wireless Sensor Network Based Structural Health Monitoring Systems [ D ]. Los Angeles : Univ of Southern California,2006.
  • 8Zhang Y F, Li J. Linear Predietor-Based Lossless Compression of Vibration Sensor Data: Systems Approach [ J]. ASCE Journal of Engineering Mechanies ,2007,133 (4) :431-441.
  • 9Ma J, Hussaini M Y. Extensions of Compressed Imaging: Flying Sensor, Coded Mask, and Fast Decoding [ J ]. IEEE T Instrum Meas,2011,60(9 ) :3128-3139.
  • 10Morlier J, Bettebghor D. Compressed Sensing Applied to Mode Shapes Reconstruction [ C ]//IMAC Conference and Exposition on Structural Dynamics. Jacksonville, USA ,2012.

引证文献10

二级引证文献42

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部