期刊文献+

基于多色集合理论和遗传算法的加工中心工步排序研究 被引量:8

Research on Machining Step Sequencing of Machining Center Based on Polychromatic Sets Theory and Genetic Algorithm
下载PDF
导出
摘要 针对加工中心上一次装夹下复杂的工步排序问题,通过实例介绍一种基于多色集合理论和遗传算法的工步排序优化算法。首先,在分析工步排序原则和典型工艺路线的基础上,根据多色集合理论建立加工中心上工步排序问题的约束模型。然后,以辅助时间最短为优化目标,建立其数学优化模型。最后,将遗传算法应用到工步排序中从而得出最优解。实例证明,在多色集合约束模型约束下的遗传算法能够很好地求解加工中心上的工步排序问题,排序结果接近最优且可以大幅提高加工中心的效率。 Aiming at the complex machining step sequencing problem on machining center at one-time clamping,an optimization algorithm for sequencing machining steps was presented via an example,which was based on polychromatic sets theory and genetic algorithm.Firstly,a constraint model which was based on the polychromatic sets theory was established after the analyses of machining step sequencing principles and typical process routes.Then its mathematical optimization model was set up by taking the assistant machining time as the optimization object.Finally,the optimum solution was obtained by applying genetic algorithm to the solving process of machining step sequencing.The example proves that this algorithm can solve the machining step sequencing problem on machining center effectively,the sequencing result is near-optimal solution and can improve the efficiency of the machining center greatly.
机构地区 同济大学
出处 《中国机械工程》 EI CAS CSCD 北大核心 2013年第18期2437-2442,共6页 China Mechanical Engineering
基金 国家科技重大专项(2011ZX04015-022)
关键词 工步排序 多色集合理论 数学优化模型 遗传算法 machining step sequencing polychromatic sets theory mathematical optimization model genetic algorithm
  • 相关文献

参考文献5

二级参考文献19

  • 1HORVATH M, MARKUS A, NCZA J V. Process planning with genetic algorithms on results of knowledge-based reasoning[J].International Journal of Computer Integrated Manufacturing, 1996,9(2) : 145-166.
  • 2VANCZA J, MARKUS A. Genetic algorithms in process planning [J]. Computers in Industry, 1991,17(3) :181-194.
  • 3GUPTA S, NAU D. Optimal block's world solutions are N-P [R]. College Park, Md. , USA : University of Maryland, 1990.
  • 4王小平,曹立明.遗传算法--理论应用与软件实现[M].西安:西安交通大学出版社,2000.
  • 5ROCHA J,RAMOS C, VALE Z. Process planning using a genetic algorithm approach[C]//Proceedings of 1999 IEEE International Symposium on Assembly and Task Planning. Washington, D. C. , USA.. IEEE, 1999 :82-86.
  • 6LI L, FUH J Y H, ZHANG Y F, et al. Application of genetic algorithm to computer-aided process planning in distributed manufacturing environments[J]. Robotics and Computer-Integrated Manufacturing,2005,21(6) :568-578.
  • 7朴月华,吴建专.图论及其应用[M].南京:东南大学出版社,2002.
  • 8RUDOLPH G. Convergence analysis of canonical genetic algorithms[J]. IEEE Transactions on Neural Networks, 1994,5 (1) :96-101.
  • 9DEITEL H M, DEITEL P J. C++ how to program[M]. 2nd ed. Upper Saddle River, N.J. ,USA:Prentice Hall,1997.
  • 10GEN M, CHENG R. Genetic algorithms and engineering design[M]. New York, N.Y. ,USA..John Wiley&Sons,1997.

共引文献57

同被引文献34

引证文献8

二级引证文献23

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部