期刊文献+

曲面上图的拉普拉斯谱半径(英文)

THE LAPLACIAN SPECTRAL RADIUS OF GRAPHS ON SURFACE
下载PDF
导出
摘要 本文研究了图嵌入到给定紧致曲面上的拉普拉斯谱半径,确定了将顶点数为n、最大度为的图分别嵌入到亏格为g的定向曲面和亏格为h的不可定向曲面上的新上界. This paper studies the Laplaeian spectral radii (i.e., the largest eigenvalue of the Laplaeian matrix) of graphs which are embedded on a given compact surface. Some new upper bounds are determined according to the order n, the maximal degree of G and the orientable geneus g (resp. non-orientalbel genus h) of the surface.
作者 陈晶晶
出处 《数学杂志》 CSCD 北大核心 2013年第5期795-802,共8页 Journal of Mathematics
关键词 (无符号)拉普拉斯谱半径 最大度 最小度 亏格 (signless) Laplacian spectral radius maximum degree minimum degree genus
  • 相关文献

参考文献22

  • 1Barnette D W. , Graph theorems for manifolds[J]. Israel J. Math., 1973, 16:62 -72.
  • 2Cao D, Vince A. Spectral radius of a planar graph [J]. Linear Algebra Appl., 1993, 187: 251-257.
  • 3Chung F R K. , Diameters and eigenvalues[J]. J. Amer. Math. Soc., 1989, 2: 187-196.
  • 4Chung F R K, Faber V, Manteuffel T A. An upper bound on the diameter of a graph from eigen- values[J]. SIAM J. Discrete Math., 1994, 7: 443-457.
  • 5Cvetkovid D M, Doob M, Sachs H. Spectra of graphs theory and applications (3rd ed.)[M]. Heidel- berg: Johann Ambrosius Barth., 1995.
  • 6Dvo::k Z, Mohar B. Spectral radius of finite and infinite planar graphs and of graphs of bounded genus[J], arXiv:0907.1591vl.
  • 7Ellingham M N, Zha X Y. The spectral radius of graphs on surfaces[J]. J. Combin. Theory Ser. B, 2000, 78: 45-56.
  • 8Fiedler M. Algebraic connectivity of graphs [J]. Czechoslovak Math. J., 1973, 98(3): 298-305.
  • 9Hansen P, Lucas C. An inequality for the signless Laplacian index of a graph using the chromatic number[J]. J. Graph Theory, 2009, LVIIm: 39-42.
  • 10Hell P, Zhu X D. The circular chromatic number of series-parallel graphs [Jl- J. Graph Theory, 2000, 33(1): 14-24.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部