摘要
主要考虑如下分数阶差分方程△^vy(t)=-f(t+v-1,y(t+v-1))在非局部条件y(v-2)=ψ(y),y(v+b)=ψ(y)下的边值问题(BVP),其中t∈[0,b],f:[v-1,v,…,v+b-1]_(N_(v-1))×R→R,f为连续函数,(?),ψ∈C(v-2,v+b])→R。
In this paper, we investigate the existence and uniqueness of solutions for frac- tional difference equation boundary value problem(BVP):△^vy(t)=-f(t+v-1,y(t+v-1))y(v-2)=ψ(y),y(v+b)=ψ(y)where t∈[0,b],f:[v-1,v,…,v+b-1]_(N_(v-1))×R→[0,+∞] is continuous, Ф, ψ ∈C([v- 2, v + b]) →R, 1 〈 v ≤ 2. We use the Banach's contraction mapping principle todeduce the uniqueness theorem. By means of the Brouwer's fixed points theorem, we obtain sufficient condition for the existence of solution to boundary value problem.
出处
《数学的实践与认识》
CSCD
北大核心
2013年第19期287-291,共5页
Mathematics in Practice and Theory
基金
国家自然科学基金(11271235)
山西省高科技项目资助(20111117)
关键词
分数阶差分方程
边值问题
非局部条件
不动点定理
fractional difference equation
boundary value problem
nonlocal conditions
fixed point theorem.