期刊文献+

带有非局部条件分数阶差分方程解的存在性和唯一性 被引量:1

Existence and Uniqueness of Solutions about Fractional Difference Equation with Nonlocal Conditions
原文传递
导出
摘要 主要考虑如下分数阶差分方程△^vy(t)=-f(t+v-1,y(t+v-1))在非局部条件y(v-2)=ψ(y),y(v+b)=ψ(y)下的边值问题(BVP),其中t∈[0,b],f:[v-1,v,…,v+b-1]_(N_(v-1))×R→R,f为连续函数,(?),ψ∈C(v-2,v+b])→R。 In this paper, we investigate the existence and uniqueness of solutions for frac- tional difference equation boundary value problem(BVP):△^vy(t)=-f(t+v-1,y(t+v-1))y(v-2)=ψ(y),y(v+b)=ψ(y)where t∈[0,b],f:[v-1,v,…,v+b-1]_(N_(v-1))×R→[0,+∞] is continuous, Ф, ψ ∈C([v- 2, v + b]) →R, 1 〈 v ≤ 2. We use the Banach's contraction mapping principle todeduce the uniqueness theorem. By means of the Brouwer's fixed points theorem, we obtain sufficient condition for the existence of solution to boundary value problem.
出处 《数学的实践与认识》 CSCD 北大核心 2013年第19期287-291,共5页 Mathematics in Practice and Theory
基金 国家自然科学基金(11271235) 山西省高科技项目资助(20111117)
关键词 分数阶差分方程 边值问题 非局部条件 不动点定理 fractional difference equation boundary value problem nonlocal conditions fixed point theorem.
  • 相关文献

参考文献10

  • 1Delbosco D, Rodino L. Existence and uniqueness for a nonlinear fractional differential equations[J]. J Math Appl, 1996(204): 609-625.
  • 2Lashmikantham V, Vatsala A S. Basic theory of fractional differential equations[J]. Nonlinear Anal, TMA, 2008, 69(8): 2677-2682.
  • 3Jiang D, Yuan C. The positive properties of the Green function for Dirichlet-type boundary value problems of nonlinear fractional differential equations and its application[J]. Nonlinear Analysis, 2010(72): 710-719.
  • 4Wang Y, Liu L, Wu Y. Positive solutions for a nonlocal fractional differential equations[J]. Nonlinear Anal, TMA, 2011(74): 3599-3682.
  • 5Su X W. Boundary value problem for a coupled system of nonlinear fractional differential equa- tions[J]. Appl Math lett, 2009(22): 64-69.
  • 6Holm M, Sum and difference compositions in discrete fractional caculus[J]. Cubo, 2011, 13(3): 153- 184.
  • 7Abdeljawad T. On Riemann and Caputo fractional differences[J]. Computers and Mathematics with Applications(2011), doi:10.1016/j.camwa. 2011.03.036.
  • 8Goodrich C S. Existence and uniqueness of solutions to a fractional difference equation with nonlocal conditions[J]. Comput Math Appl, 2011(61): 191-202.
  • 9Goodrich C S. On positive solutions to nonlocal fractional and integer-order difference equations[J]. Appl Anal Discrete Math, 2011, 5: 122-132.
  • 10Goodrich C S. Existence of a positive solution to a system of discrete fractional boundary value problems[J]. Comput Math Appl, 2011(217): 4740-4753.

同被引文献3

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部