期刊文献+

路径搜索策略研究 被引量:1

Path Searching Strategies Research
下载PDF
导出
摘要 针对城市道路网车辆导航系统中经典Dijkstra最短路径搜索算法中存在的计算效率问题,研究基于启发式策略和双向搜索策略的双向启发式优化搜索算法,并探讨路网的分层搜索策略.采用启发信息减少搜索范围、双向搜索分解搜索空间,从而提高了算法的执行效率.实际路网仿真结果表明:相比经典Dijkstra算法,启发式策略搜索效率可提升70%~80%,双向搜索策略在不损失搜索精度下进一步提高搜索效率5%~10%,而分层搜索策略可以极大提高大规模路网车辆导航长距离下路径搜索效率. Computational efficiency is widely recognized to be the critical issue in the shortest route searching algorithm on urban road traffic network vehicle navigation system using classic Dijkstra algorithm. Heuristic search strategy and bi-directional search strategy are studied, including the exploration with multi-level road networks search strategy. Heuristic information is utilized to limit the search area and bi-directional search method is proposed to decompose the search space, the efficiency of computing shortest path was improved and acceptable results were given with the algorithms. Comparative simulation results on traffic network indicate 70% - 80% computation efficiency improvement by heuristic strategy against classical Dijkstra algorithm and continual 5 % - 10% efficiency gains without losing accuracy by bi-directional search strategy. Finally, multi-level search strategy indicates promising efficiency boost in long distance vehicle navigation system under real traffic networks.
出处 《微电子学与计算机》 CSCD 北大核心 2013年第10期42-45,49,共5页 Microelectronics & Computer
基金 国家自然科学基金项目(61104175) 四川省软科学研究计划项目(2012ZR0022)
关键词 最短路径规划 DIJKSTRA算法 启发式策略 双向搜索策略 分层搜索策略 路网 shortest route searching algorithm Dijkstra algorithm heuristic strategy bi-directional searchstrategy multi-level search strategy traffic network
  • 相关文献

参考文献7

二级参考文献32

  • 1戴世强,冯苏苇,顾国庆.交通流动力学:它的内容、方法和意义[J].自然杂志,1997,19(4):196-201. 被引量:31
  • 2吴正.低速混合型城市交通的流体力学模型[J].力学学报,1994,26(2):149-157. 被引量:69
  • 3US Department of Transportation. Traveler information system in europe [ EB/OL ]. http://international. fhwa. dot. gov/travelinfo/eontents. cfm, 2008.8. 2009.7.
  • 4Kiseok Sung, Bell M G, Seong M, et al. Shortest paths in a network with time-dependent flow speeds [ J]. European Journal of Operational Research, 2000,121(1 ) : 32 - 39.
  • 5Evangelos Kanoulas, Du Y, Xia T, et al. Finding fastest paths on a road network with speed patterns[ C]. 22nd International Conference on Data Engineering, 2006:10- 19.
  • 6Dave Ferguson, Likhachev M, Anthony Stentz. A guide to heuristic-based path planning [ C ]. International Conference on Automated Planning and Scheduling (ICAPS), 2005.
  • 7Sven Koenig, Maxim Likhachev. D* Lite[C]. Eighteenth National Conference on Artificial Intelligence, 2002: 476- 483.
  • 8王士同,计算机学报,1988年,11卷,5期,294页
  • 9王士同,计算机学报
  • 10王士同,中国科学

共引文献47

同被引文献11

引证文献1

二级引证文献46

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部