期刊文献+

一类具有CTL作用的HIV感染模型的全局稳定性 被引量:5

Global Stability of an HIV Infection Model with CTL Effect
原文传递
导出
摘要 通过假设无HIV感染时个体体内的CTL细胞存在常数输入和被感染CD4+T细胞对CTL细胞繁殖的影响具有饱和形式,本文建立了一类具有CTL作用的HIV感染模型,得到了确定模型动力学性态的基本再生数.当基本再生数不大于1时,健康平衡点在可行域上是全局渐近稳定的,即HIV在个体体内最终灭绝;当基本再生数大于1时,模型的惟一感染平衡点在可行域内是全局渐近稳定的,即HIV将在个体体内持续存在,并且其浓度最终趋于一个正常数. An HIV infection model with CTL effect is established by assuming that there is a constant input of CTL cells in the absence of HIV infection,and that the impact of the infected CD4+T cells on the proliferation of CTL cells is with a form of saturation.The basic reproduction number is obtained,which determines the dynamical behaviors of the model.When the number is not greater than 1,the healthy equilibrium is globally stable on the feasible region,which implies that HIV dies out in-host eventually;when the number is greater than 1,the model has a unique infection equilibrium,which is globally stable in the feasible region,that is,HIV persists in body of the infected individuals,and the concentration of HIV approaches a positive number in-host.
出处 《生物数学学报》 2013年第3期467-472,共6页 Journal of Biomathematics
基金 国家自然科学基金(11071256 11171267) 国家科技重大专项(2012ZX10001001)
关键词 HIV模型 CTL作用 平衡点 稳定性 HIV model CTL effect Equilibrium Stability
  • 相关文献

参考文献12

  • 1Nowak M A,Anderson R,Boerlijst M,Bonhoeffer S,May R,McMichael A.HIV-1 evolution and disease progression[J].Science,1996,274(3):1008-1010.
  • 2Nowak M A,May R M.Virus Dynamics:Mathematical Principles of Immunology and Virology[M].Oxford University Press,2000.
  • 3Perelson A S,Nelson P W.Mathematical Analysis of HIV-l Dynamics in Vivo[J].SIAM Review,1999,41(1):3-44.
  • 4Iwami S,Nakaoka S,Xakeuchi Y.Viral diversity limits immune diversity in asymptomatic phase of HIV infection[J].Theoretical Population Biology,2008,73(2):332-341.
  • 5Wodarz D,Nowak M A.Evolutionary dynamics of HIV-induced subversion of the immune response[J].Immunologiocal Review,1999,168(1):75-89.
  • 6Fauci A S.Immunopathogenesis of HIV infection[J].Journal of Acquired Immune Deficiency Syndromes,1993,6(2):655-662.
  • 7闫银翠,王稳地.考虑CTL免疫作用的HIV感染模型的全局动力学性态[J].西南大学学报(自然科学版),2011,33(5):22-27. 被引量:9
  • 8庞海燕,王稳地,王开发.考虑CTL免疫反应的病毒动力学模型的全局稳定性分析(英文)[J].西南师范大学学报(自然科学版),2005,30(5):796-799. 被引量:24
  • 9Tarfulea N,Blink A,Nelson R,Turpin D.A CTL-inclusive mathematical model for antiretroviral treatment of HIV infection[J].International Journal of Biomathematics,2011,4(1):1-22.
  • 10王会兰,朱惠延,王礼广,许友军.具饱和CTL免疫反应的时滞HIV感染系统稳定性分析[J].生物数学学报,2012,27(2):274-282. 被引量:9

二级参考文献35

  • 1庞海燕,王稳地,王开发.考虑CTL免疫反应的病毒动力学模型的全局稳定性分析(英文)[J].西南师范大学学报(自然科学版),2005,30(5):796-799. 被引量:24
  • 2闫萍,吴昭英.具潜伏期的无免疫型传染病动力学的微分模型[J].生物数学学报,2006,21(1):47-56. 被引量:22
  • 3庞海燕,王稳地,王开发.考虑免疫反应损害的细胞细胞病毒动力学模型的确定和随机稳定性分析(英文)[J].西南师范大学学报(自然科学版),2006,31(5):26-30. 被引量:5
  • 4马知恩,周义仓.常微分方程定性与稳定性方法[M].北京:科学出版社,2007.
  • 5Perelson A, Nelson P. Mathematical analysis of HIV-1 dynamics in vivo[J]. Society for Industrial and Applied Mathematics Review, 1999, 41(1):3-44.
  • 6Culshaw R, Ruan S, Spiteri R. Optimal HIV treatment by maximizing imnmne response[J]. Journal of Mathematical Biology, 2004, 48(5):545-562.
  • 7Zhu H, Zou X. Dynamics of a HIV-1 Infection model with cell-mediatecl immune response and intracellular delay[J]. Discrete and Continuous Dynamical Systems-B, 2009, 12(1):513-526.
  • 8Martin Nowak A, Nomak, Robert M. May, Virus Dynamics[M]. New York: Oxford University Press, 2000.
  • 9Gyori I, Ladas G. Oscillation Theory of Delay Differential Equations with Applications[M]. Oxford: Clarendon Press, 1991.
  • 10Busenberg S, Cooke K L. Vertically Transmitted Diseases, Model and Dynamics(Biomathematics.23)[M]. New York: Springer, 1993.

共引文献40

同被引文献23

  • 1CUIFANG L V,LI Honghuang,ZHAO Huiyuan. Global stability for an HIV-1 infection model with Bedding- ton-DeAngelis incidence rate and CTL immune response[J].Commun Nonlinear Sci Numer Simulat2014,19(1 ):121-127.
  • 2HUANG Dongwei,ZHANG Xiao,GUO Yongfeng, et al.Analysis of an HIV infection model with treatments and delayed immune response[J].Applied Mathemati- cal Modelling,2016,40 (4):3081-3089.
  • 3NOWAK M A, BONHOEFFER S, HILL A M, et al. Viral Dynamics in hepatitis B virus infeetion[J].Pro- ceedings of the National academy of Sciences of the United States of America,1996,93 (9):4398-4402.
  • 4ELAIW A M,AZOZ S A.Global properties of a class of HIV infection models with Beddington-DeAngelis functional response [J].Mathematieal Metheods in the Applied Sciences,2013,36 (4):779 -794.
  • 5KOROBEINIKOV A.Global properties of basic virusdynamics models[J].Bulletin of Mathematical Biolo- gy,2014,66(4):879-883.
  • 6WANG Xia,AHMED E,SONG Xinyu.Olobal proper- ties of a delayed H1V infection model with CTL immune response[J].Applied Mathematics and Com- putation,2012 ,218 (18):9405 -9414.
  • 7TIAN Xiaohong, XU Rui.Global stability and Hopf bifurcation of an HIV-1 infection model with satura- tion incidence and delayed CTL immune response [J].Applied Mathematics and Computation,2014,237(15):146-154.
  • 8Cuifang Lv, Lihong Huang,Zhaohui Yuan. Global stability for an HIV - 1 infection model with Beddington - DeAngelis inci- dence rate and CTL immune response[Jl. Commun Nonlinear Sci Numer Simulat,2014, 19(1 ) :121 -127.
  • 9Dongwei Huanga, Xiao Zhang, Yong feng Guo, et al. Analysis of an HIV infection model with treatments and delayed immune re- sponse[J]. Applied Mathematical Modelling,2016,40(4) :3081 - 3089.
  • 10Nowak M A, Bonhoeffer S, Hill A M, et al. Viral Dynamics in hepatitis B virus infection [J]. Proceedings of the National acade- my of Sciences of the United States of America, 1996,93 (9) :4398 -4402.

引证文献5

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部