期刊文献+

周长小于(33n)^(1/2)的图的边数

The Number of Edges in a Graph with a Circumference Less than (33n)^(1/2)
下载PDF
导出
摘要 G的周长是指G中最长圈的长.本文给出周长小于(33n)^(1/2)的任何两个圈的长均不相等的图的最大可能边数的一个下界. The length of a longest cycle in a graph is called its circumference. This paper presents a lower bound of the maximum possible number in a graph, for the length of any two cycles are not equal, with the circumference less than √33n .
出处 《漳州师范学院学报(自然科学版)》 2013年第3期12-15,共4页 Journal of ZhangZhou Teachers College(Natural Science)
基金 闽南师范大学研究生科研立项资助项目(1300-1314)
关键词 周长 边数 cycle circumference edge number
  • 相关文献

参考文献2

二级参考文献18

  • 1SHI Yongbing.Some problem of cycle length distribution[J].南京大学学报(图论专辑),1991,27:233-234.
  • 2孙家恕 施永兵.2连通图的有关圈的若干性质[J].上海师范大学学报:自然科学版,1992,21(1):14-19.
  • 3BONDY J A, MURTY U S R. Graph Theory with Applications[M]. Macmillan Press, 1976.
  • 4SHI Yongbing. On maximum cycle-distributed graphs[J]. Discrete Math, 1988, 71: 57-71.
  • 5SHI Yongbing. The number of edges in a maximum cycle-distributed graph[J]. Discrete Math. 1992, 104:205-209.
  • 6SHI Yongbing. On simple MCD graphs containing a subgraph homeomorphic to K4 [ J ]. Discrete Math, 1994, 126: 325-338.
  • 7J.A. Bondy and U.S.R. Murty. Graph Theory with Applications[M]. The Macmillan Press Ltd, New York, 1976.
  • 8E. Boros, Y. Caro, Z. Furedi and R. Yuster. Covering non-uniform hypergraphs[J]. J. Combin. Theory Ser. B 82(2001), 270-284.
  • 9G. Chen, J. Lehel, M. S. Jacobson and W. E. Shreve. Note on graphs without repeated cycle lengths[J], J. Graph Theory, 1998, 29: 11-15.
  • 10X. Jia. Some extremal problems on cycle distributed graphs[J]. Congr. Numer, 1996, 121: 216-222.

共引文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部