期刊文献+

由粗到精分层技术下的复杂网络入侵检测方法研究 被引量:4

Research on Coarse-to-fine Hierarchical Intrusion Detection Technology in Complex Network
下载PDF
导出
摘要 复杂网络具有开放性、互联性和共享性,易受到大规模的入侵,采用传统"一对一"方式构建网络入侵检测器,检测费时,实时性检测差。为了提高复杂网络入侵检测性能,提出一种引入由粗到精分层概念的多层网络入侵检测模型。在传统的LSSVM分类器基础上,对分类过程进一步细分,建立一种由粗到精策略,构造多层的网络入侵分类器,在精细分类层,将引入拥挤度和隔离度因子的粒子群优化分类器。以提高入侵分类器性能。最后采用KDD 99数据集进行仿真测试。结果表明,相对于其它检测模型,该模型不仅加快了入侵检测速度,满足入侵检测实时性;同时提高了网络入侵检测率,为网络安全提供了有效保证。 Complex network is open,interconnection and sharing,vulnerable to large-scale invasion,the traditional "one to one" method is used to build network intrusion detection model,which intrusion detection is time consuming,effects of real-time for intrusion detection is poor,in order to improve the performance of network intrusion detection.Network intrusion model based on a coarse-to-fine hierarchical technical is proposed.Based on traditional LSSVM classifier,the classification process is further subdivided,a coarse-to-fine strategy is used to establish a network multilayer structure intrusion classifier.In fine classification layer,the crowded and isolation factor particle swarm classifier is introduced to improve the performance of the classifier.Finally,simulation test is carried out by using KDD 99 data sets.The results show that,compared with other detection model,this proposed model can not only accelerate the speed of intrusion detection,can meet the real-time requirement of network intrusion detection,and improve the network intrusion detection rate,and it can provide effective guarantee for network security.
作者 李振美
出处 《科学技术与工程》 北大核心 2013年第30期9094-9098,共5页 Science Technology and Engineering
关键词 复杂网络 粒子群优化算法 网络入侵 分类器 complex network particle swarm optimization algorithm network intrusion classifier
  • 相关文献

参考文献10

二级参考文献42

  • 1卿斯汉,蒋建春,马恒太,文伟平,刘雪飞.入侵检测技术研究综述[J].通信学报,2004,25(7):19-29. 被引量:234
  • 2张琨,许满武,刘凤玉,张宏.基于支持向量机的异常入侵检测系统[J].计算机工程,2004,30(18):43-45. 被引量:7
  • 3高海华,杨辉华,王行愚.基于BPSO-SVM的网络入侵特征选择和检测[J].计算机工程,2006,32(8):37-39. 被引量:20
  • 4胡旺,李志蜀.一种更简化而高效的粒子群优化算法[J].软件学报,2007,18(4):861-868. 被引量:334
  • 5Yang Y, Liu X.Are-exam ination of text categorization methods[C]// Proceedings of the 22nd Annual International ACM SIGIR Conference on Research and Development in Information Retrieval (S IGIR'99), 1999:42-49.
  • 6Tan Songbo.Neighbor weighted K-nearest neighbor for unbalanced text corpus [J].Expert Systems with Applications, 2005,28 (4) : 667- 671.
  • 7Hwang W J,Wen K W.Fast KNN classification algorithm based on partial distance seareh[J].Electron Lett, 1998,34(21 ) : 2062-2063.
  • 8Kennedy J,Eberhart R C.Particle swarm optimization[C]//Proceedings of the 1995 IEEE International Conference on Neural Networks.Perth,Australia: IEEE Service Center,Piscataway,NJ, 1995 : 1942-1948.
  • 9Bykova M, Ostermann S, Tjaden B. Detecting Network Intrusions via a Statistical Analysis of Network Packet Characteristics[C]//Proc of the 33rd Southeastern Symp on System Theory, 2001.
  • 10Sun N Q, Li Y. Intrusion Detection Based on Back-Propagation Neural Network and Feature Selection Mechanism[C] //Proc of FGIT'09,2009 : 151-159.

共引文献99

同被引文献22

引证文献4

二级引证文献48

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部