期刊文献+

基于NSGA-Ⅱ叉车轮边减速器优化设计 被引量:2

Optimization Design for Forklift Wheel Side Reducer Based on NSGA-Ⅱ
下载PDF
导出
摘要 以叉车轮边减速器行星轮系为研究对象,在满足设计要求的前提下,以轮边减速器行星轮系齿圈直径最小,中心距最大和重合度最高为目标建立目标优化数学模型。运用改进的NSGA-Ⅱ对多目标优化并得到Pareto最优解集,利用多指标加权灰靶决策模型选择最优设计方案。优化结果表明:改进遗传算法的运用是可靠有效的,为以后产品优化设计提供新了的设计思路。 The planetary gear train of fnrklift wheel side reducer was researched as an objective. Under the premise of satisfying design requirements, the objective optimization mathematical model was established based on muhi-objective of minimization diameter of ring gear , maximum center distance and maximum degree of coincidence. The Pareto optimal solution set was obtained by using the improved NSGA- II for optimization of multi-objective, and the optimal design seheme was determined by using the multi-attribute weighted grey target decision model. Tire optimization result shows that, application of the improved genetic algorithm is both effective and feasible, and provides a uew way tbr flu'- ther optimization design.
出处 《汽车零部件》 2013年第10期47-50,共4页 Automobile Parts
关键词 轮边减速器 改进NSGA-Ⅱ 多目标优化 行星轮系 Wheel side reducer Improved NSGA-II Muhi-objective optimization Planetary gear train
  • 引文网络
  • 相关文献

参考文献7

  • 1饶振纲.行星传动机构设计[M]北京:国防工业出版社,199448-72.
  • 2王文斌.机械设计手册[M]北京:机械工业出版社,2004.
  • 3孙恒;陈作模;葛文杰.机械原理[M]北京:高等教育出版社,2006.
  • 4DEB K,PRATAP A,AGARWAL S. A Fast and Elitist Multiobjective Genetic Algorithms:NSGA-Ⅱ[J].IEEE Transactions on Evolutionary Computation,2002,(02):182-197.
  • 5刘敏,曾文华,赵建峰.一种快速的双目标非支配排序算法[J].模式识别与人工智能,2011,24(4):538-547. 被引量:6
  • 6郑金华.多目标进化算法及其应用[M]北京:科学出版社,2007.
  • 7党耀国;刘思峰;王正新.灰色预测与决策模型研究[M]北京:科学出版社,2009.

二级参考文献11

  • 1郑金华,蒋浩,邝达,史忠植.用擂台赛法则构造多目标Pareto最优解集的方法[J].软件学报,2007,18(6):1287-1297. 被引量:54
  • 2Coello C A, Lamont G B, Van Veldhuizen D A. Evolutionary Algorithms for Solving Multi-Objective Problems. 2nd Edition. New York, USA: Springer-Verlag, 2007.
  • 3Deb K, Pratap A, Agarwal S, et al. A Fast and Elitist Muhiobjective Genetic Algorithm: NSGA -II. IEEE Trans on Evolutionary Computation, 2002, 6(2): 182-197.
  • 4Jensen M T. Reducing the Run-Time Complexity of Muhiobjective EAs: The NSGA - II and Other Algorithms. IEEE Trans on Evolutionary Computation, 2003, 7 (5) : 503 - 515.
  • 5Berrichi A, Amodeo L, Yalaoui F, et al. Bi-Objective Optimization Algorithms for Joint Production and Maintenance Scheduling: Application to the Parallel Machine Problem. Journal of Intelligent Manufacturing, 2009, 20(4): 389-400.
  • 6Jozefowiez N, Semet F, Talbi E G. An Evolutionary Algorithm for the Vehicle Routing Problem with Route Balancing. European Journal of Operational Research, 2009, 195 (3) : 761 - 769.
  • 7Abido M A. Multiobjective Evolutionary Algorithms for Electric Power Dispatch Problem. IEEE Trans on Evolutionary Computation, 2006, 10(3) : 315 -329.
  • 8Deb K, Datta R. A Hybrid Bi-Objective Evolutionary-Penalty Approach for Computationally Fast and Accurate Constrained Optimization. Technical Report, 2010004. Kanpur Genetic Algorithms Laboratory, Indian Institute of Technology. Kanpur, India, 2010.
  • 9Deb K, Saha A. Multimodal Optimization Using a Bi-Objective Evolutionary Algorithm. Technical Report, 2009006. Kanpur Genetic Algorithms Laboratory, Indian Institute of Technology. Kanpur, India, 2009.
  • 10Deb K, Goel T. Controlled Elitist Non-Dominated Sorting Genetic Algorithms for Better Convergence//Zitzler E, Deb K, Thiele L, et al, eds. Proc of the 1 st International Conference on Evolutionary Multi-Criterion Optimization. Zurich, Switzerland, 2001:67-81.

共引文献5

同被引文献9

引证文献2

二级引证文献4

;
使用帮助 返回顶部