摘要
本文研究了一类带泊松跳的中立型随机微积分方程(NSIDEPJs).利用Picard迭代法和Bihari不等式的一个推论,在一类广义利普希茨条件下获得了希尔伯特空间中NSIDEPJs温和解的存在唯一性和稳定性,改进和推广了已有的结果.最后,举例说明本文结果的有效性.
In this paper, we study a class of neutral stochastic integrodifferential equations with Poisson jumps (NSIDEPJs). By using the method of Picard approximation and a corollary of Bihari's inequality, we obtain the existence, uniqueness and stability of mild solutions for NSIDEPJs under a class of generalized Lipschitz condition in a Hilbert space, which generalize and improve some known results. Finally, an example is provided to illustrate the efficiency of the obtained results.
出处
《数学杂志》
CSCD
北大核心
2013年第6期1043-1058,共16页
Journal of Mathematics
基金
Supported in part by a China NSF Grant(11171158)
Qing Lan and "333" Project of Jiangsu Province
the NSF of the Jiangsu Higher Education Committee of China(11KJA110001)
关键词
预解算子
中立型随机微积分方程
Picard迭代
泊松跳
resolvent operator
neutral stochastic integrodifferential equation
Picard ap- proximation
Poisson jumps